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Abstract. Extending work of Puninski, Puninskaya and Toffalori in
[PPT07], we show that if V is an effectively given valuation domain then
the theory of all V -modules is decidable if and only if there exists an
algorithm which, given a, b ∈ V , answers whether a ∈ rad(bV ). This was
conjectured in [PPT07] for valuation domains with dense value group
where it was proved for valuation domains with dense archimedean value
group. The only ingredient missing from [PPT07] to extend the result to
valuation domains with dense value group or infinite residue field is an
algorithm which decides inclusion for finite unions of Ziegler open sets.
We go on to give an example of a valuation domain with infinite Krull
dimension which has decidable theory of modules with respect to one
effective presentation and undecidable theory of modules with respect
to another. We show that for this to occur infinite Krull dimension is
necessary.

1. Introduction

Throughout this paper all rings have 1 and all modules are unital. Unless
otherwise indicated modules are right modules.
In [PPT07] Puninski, Puninskaya and Toffalori conjectured that the theory
of modules of an effectively given valuation domain V with dense value
group is decidable if and only if there is an algorithm which, given a, b ∈ V ,
answers whether there exists an n ∈ N such that an ∈ bV , that is answers
whether a ∈ rad(bV ). We show that this conjecture is unconditionally true,
i.e. without any restriction on the value group of V (theorem 7.1). This is
the main result of our paper.
For valuation domains with non-archimedean dense value groups or infinite
residue fields the only ingredient missing from the proof in [PPT07] is an
algorithm which decides whether inclusions hold for finite unions of Ziegler
basic open sets. We explicitly describe such an algorithm in section 4.
On the other hand, when V has non-dense value group and finite residue
field, the number of indecomposable pure-injective modules with finite but
not equal to 1 Baur-Monk invariant sentences increases significantly. The
proof in [PPT07] for a valuation domain with dense value group and finite
residue field uses the fact that for each Baur-Monk invariant |ϕ/ψ| there are
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only finitely many indecomposable pure-injective modules (up to isomor-
phism) with |ϕ/ψ| finite and not equal to 1. For valuation domains with
non-dense value group this is no longer true. Luckily, this problem is still
not too combinatorially difficult (see section 6).
In section 5 we discuss duality for the Ziegler spectrum of a valuation
domain. Prest [Pre88, Chapter 8] defined the dual Dϕ of a pp-formula ϕ.
This map induces a lattice anti-isomorphism between the lattice of right and
left pp-formulae of a ring such that D2ϕ = ϕ. Herzog in [Her93] extended
this notion to a lattice isomorphism from the lattice of open sets of the
right Ziegler spectrum ZgR of a ring R to the lattice of open sets of the left
Ziegler spectrum RZg of R. It is not known in general whether this map
is induced by a homeomorphism. If there is such a homeomorphism, we
call it a duality homeomorphism. Note that for a commutative ring R this
will in general be a non-trivial automorphism of ZgR. We give an explicit
duality homeomorphism for the Ziegler spectrum of a valuation domain.
We use Herzog’s results to show that if D : ZgR → RZg is such a duality
homeomorphism then for all pairs of pp-formulae ϕ/ψ and all N ∈ ZgR,
|ϕ(N)/ψ(N)| = |Dψ(DN)/Dϕ(DN)|. This is used in section 6 to reduce
the number of indecomposable pure-injective modules N for which we need
to explicitly calculate |ϕ(N)/ψ(N)|.
In the final section we give an example of a valuation domain V with infinite
Krull dimension which has undecidable theory of modules with respect to
one effective presentation and decidable theory of modules with respect to
another. We do this by constructing a recursive totally ordered abelian
group in which the relation

α� β if and only if ∀n |α| ≥ n|β|
is not recursive. We note that if V is an effectively given valuation domain
with finite Krull dimension then its theory of modules is decidable.

Throughout this paper, for a set X, |X| denotes the number of elements of
X if X is finite and∞ otherwise. We will use N to denote the set of natural
numbers not including zero and N0 to denote the set of natural numbers
with zero included.

2. Background

For general background on model theory of modules see [Pre88].
Let R be a ring. Let LR := {0,+, (r)r∈R} be the language of (right)
R-modules and TR be the theory of (right) R-modules. A (right) pp-n-
formula is a formula of the form

∃y (y, x)A = 0

where l, n,m are natural numbers, A is an (l + n) ×m matrix with entries
from R, and y is an l-tuple of variables and x is an n-tuple of variables.
The solution set ϕ(M) of a pp-n-formula ϕ in an R-module M is a subgroup
of Mn.

2



Up to TR-equivalence, the set of pp-n-formulae, in LR, is a lattice with
respect to implication with the join of two formulae ϕ,ψ given by

(ϕ+ ψ)(x) := ∃y, z(x = y + z ∧ ϕ(y) ∧ ψ(z))

and the meet given by ϕ ∧ ψ. A pp-pair ϕ/ψ is simply a pair of pp-1-
formulae.
Let ϕ,ψ be pp-1-formulae and n ∈ N. There is a sentence, |ϕ/ψ| ≥ n in
the language of (right) R-modules, which expresses in every R-module M
that the quotient ϕ(M)/ϕ ∧ ψ(M) has at least n elements. Such sentences
will be referred to as invariant sentences. We will write |ϕ/ψ| = n for
the sentence |ϕ/ψ| ≥ n ∧ ¬(|ϕ/ψ| ≥ n + 1). For an R-module M , we will
write |ϕ(M)/ψ(M)| ≥ n instead of M |= |ϕ/ψ| ≥ n. We will also write
|ϕ(M)/ψ(M)| = ∞ to mean that |ϕ(M)/ψ(M)| ≥ n for all n ∈ N. This
final statement is of course not necessarily expressed by a first order sentence
in the language of R-modules.

Theorem 2.1 (Baur-Monk Theorem). [Pre88] Let R be a ring. Every sen-
tence χ ∈ LR is equivalent to a boolean combination of invariant sentences.

The above theorem together with the fact that the theory of modules of
a recursively given ring R is recursively axiomatised means that, in order
to show that the theory of R-modules is recursive, it is enough to show
that there is an algorithm which given a boolean combination of invariant
sentences χ answers whether there is an R-module in which χ is true.
A pp-type is a set of pp-formulae. If M is an R-module and a ∈ M then
the set of pp-formulae satisfied by a in M is called the pp-type of a. We
say a pp-type is complete if it is the pp-type of an element of a module or
equivalently if it is closed under implications (with respect to the theory of
all R-modules) and conjunctions.
A pure-embedding between two modules is an embedding which preserves
and reflects the solution sets of pp-formulae. We say a module N is pure-
injective if for every pure-embedding g : N → M , the image of N in M
is a direct summand of M ; equivalently, it is injective with respect to pure-
embeddings. For every R-module M , there exists a pure-injective module
M such that M is a pure-submodule of M and for all pure-injectives M ′

and all pure-embeddings f : M ↪→M ′ there is an extension of f embedding
M purely into M ′. Moreover, M is unique up to isomorphism over M . We
denote this module by PE(M) and call it the pure-injective hull of M .
All modules are elementary equivalent to their pure-injective hull [Pre88,
Theorem 4.21]. Every module is elementary equivalent to a direct sum of
indecomposable pure-injective modules [Pre88, Corollary 4.36]. Combining
this fact with the Baur-Monk theorem and that the solution sets of pp-
formulae commute with direct sums we get that any sentence χ in the
language of R-modules is true in some module if and only if it is true in
some finite direct sum of indecomposable pure-injective modules.

3



The (right) Ziegler spectrum of a ring R, denoted ZgR, is a topological
space whose points are isomorphism classes of indecomposable pure-injective
(right) modules and which has a basis of open sets given by:

(ϕ/ψ) = {M | ϕ(M) ) ψ(M) ∩ ϕ(M)}
where ϕ,ψ range over (right) pp-1-formulae. The left Ziegler spectrum RZg
of a ring is defined analogously.
A commutative integral domain V is called a valuation domain if the
lattice of ideals of V is a chain. This implies that a subset I of V is an
ideal of V if and only if for all r ∈ V and a ∈ I, ar ∈ I. Note that the
finitely generated ideals of V are principal. Throughout we will assume that
V is not a field (the theory of K-vector spaces for a recursively given field
K is decidable). Unless otherwise stated, V will always denote a valuation
domain and m will denote its unique maximal ideal. The field V/m is called
the residue field of V . Let Q be the field of fractions of V and U the
multiplicative group of units of V . The (multiplicative) quotient group
Q×/U ordered by aU ≤ bU if and only if b/a ∈ V is called the value
group of V .
The reader should note that the value group of V is dense if and only if
the maximal ideal of V is not principal. For more background on valuation
domains see [FS01, Chapter II].

3. Decidability and modules

Let R be a non-finite ring. The theory of R-modules, TR, is decidable
if there is an algorithm which, given a sentence χ in LR, answers whether
χR ∈ TR or not. Since algorithms and their formalisms (Turing machines,
partial recursive functions etc) are usually expected to take natural numbers
as input and output natural numbers, in order to talk (formally) about
decidability of TR we must have some way of converting ring elements into
natural numbers. So we assume that our algorithms are implemented with
respect to a surjective function π : N → R. Of course this means that R
must be countable.
We now discuss conditions we must impose on π in order to have any hope
of TR being decidable. For more details see [Pre88, Chapter 17]. Firstly, for
all r1, r2 ∈ R, r1 = r2 if and only if TR |= ∀x(xr1 = xr2). So we must be
able to decide equality of elements and therefore, may as well assume that
π is a bijection. For similar reasons, we must assume that given a, b ∈ R we
can compute a+ b and a · b. Thus we assume that + and · induce recursive
functions on N via π. Finally, for all r ∈ R, r is a unit in R if and only
if TR |= ∀x(xr = 0 → x = 0). Thus we must be able to compute whether
an element is a unit or not. Thus, we assume that the inverse image of the
units of R under π is a recursive subset of N.
Note that for a valuation domain V the set of units of V is exactly the
complement of m. Thus we get the following definition (which is obviously
equivalent to the definition given in [PPT07]).
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Definition 3.1. An effectively given valuation domain is a (countable)
valuation domain V together with a bijection π : N → V such that the
pre-image of the maximal ideal of V under π is a recursive set and addition
and multiplication induce recursive functions on N via π. We call the map
π an effective presentation of V .

Note that this implies that there is an algorithm (with respect to π) which
given a, b ∈ V either computes c such that a = bc or decides that such a c
does not exist [PPT07, Remark 3.2] and that there is an algorithm (with
respect to π) which given a unit a ∈ V outputs a−1 [PPT07, Remark 3.1].
We will work with an informal notion of algorithm, in the knowledge that,
given the time and inclination, we could rewrite all proofs in terms of
recursive functions.
The following lemma is the easy direction of our main theorem and occurs
as lemma 9.1 of [PPT07] with the restriction that R is a valuation domain.
This restriction is unnecessary, so we include a proof.

Lemma 3.2. Let R be a countable commutative ring together with a bijection
π : R→ N with decidable theory of modules (with respect to π). Then there
is an algorithm which, given a, b ∈ V decides whether a ∈ rad(bR).

Proof. Claim:

TR |= ∃x(x 6= 0 ∧ xb = 0)→ ∃y(y 6= 0 ∧ xa = 0)

if and only if

a ∈ rad(bR).

First suppose that a ∈ rad(bR). There exists an n ∈ N such that an ∈ bV .
Suppose N is an R-module and x ∈ N such that x 6= 0 and xb = 0.
Then xan = 0. Take m least such that xam = 0, then (xam−1)a = 0 and
xam−1 6= 0.
Now suppose that

TR |= ∃x(x 6= 0 ∧ xb = 0)→ ∃y(y 6= 0 ∧ xa = 0).

Note that if b is a unit in R then a ∈ rad(bR) = R for all a ∈ R. Let pCR
be a prime ideal such that b ∈ p (throughout, we write I C R to indicate
that I is an ideal of R). Then 1 + p ∈ R/p is annihilated by b and non-zero.
Hence there exists y ∈ R\p such that ya ∈ p. Therefore a ∈ p. Thus a ∈ p
for every prime ideal p containing b. Hence a ∈ rad(bR) since rad(bR) is the
intersection of all prime ideals containing b. �

4. Algorithms and the Ziegler spectrum

In this section we show that if V is an effectively given valuation domain
with an algorithm which, given a, b ∈ V , answers whether a ∈ rad(bV ) then
there exists an algorithm which given n ∈ N, a pp-pair ϕ/ψ and n pp-pairs
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ϑi/ξi, answers whether

(ϕ/ψ) ⊆
n⋃
i=1

(ϑi/ξi) .

For any n ∈ N, pp-1-formulae ϕ,ψ and pp-1-formulae ϑi, ξi for 1 ≤ i ≤ n,

TR |= ¬
(∣∣∣ϕψ ∣∣∣ > 1 ∧

∧n
i=1

∣∣∣ϑiξi ∣∣∣ = 1
)

is equivalent to (ϕ/ψ) ⊆
⋃n
i=1 (ϑi/ξi) .

Hence, decidability of TR implies we can effectively decide whether (ϕ/ψ) ⊆⋃n
i=1 (ϑi/ξi).

We start by recalling some facts about Ziegler spectra of valuation domains.

Lemma 4.1. [PPT07, Lemma 3.3 and Corollary 3.4] Let V be an effectively
given valuation domain. There exists an algorithm which, given a pp-1-
formula ϕ, produces a formula of the form

∑n
i=1(xai = 0 ∧ bi|x) equivalent

to ϕ and produces a formula of the form
∧m
i=1(xci = 0 + di|x) equivalent to

ϕ.

Lemma 4.2. [Pun99][PPT07, Corollary 4.3] The collection of open sets

Wa,b,g,h := ((xag = 0) ∧ (b|x)/(xa = 0) + (bh|x))

for non-zero a, b ∈ V and g, h ∈ m form a basis for ZgV .
Moreover, if V is effectively given then there exists an algorithm which, given
ϕ/ψ a pp-pair, returns the symbol ∅ if (ϕ/ψ) is empty and otherwise returns
n ∈ N, ai, bi ∈ V \{0} and gi, hi ∈ m such that

(ϕ/ψ) =
n⋃
i=1

Wai,bi,gi,hi .

A pair over a valuation domain is a pair of proper ideals 〈I, J〉. To each
pair over V , we can associate a pp-type

p〈I, J〉 = {xb = 0 | b ∈ I} ∪ {a|x | a /∈ J}.
Recall that every complete pp-type is realised in a (unique up to isomor-
phism) minimal pure-injective module, denoted N(p) (see [Zie84, Theorem
3.6] or [Pre88, Theorem 4.12]). We say a complete pp-type is indecompos-
able if N(p) is indecomposable. We say that 〈I, J〉 ∼ 〈K,L〉 if there exists
non-zero a ∈ R such that at least one of the following holds:

(1) Ia = K and J = La or
(2) I = Ka and Ja = L.

Lemma 4.3. [Pun99] Every pp-type p〈I, J〉 has a unique extension to a com-
plete indecomposable pp-type and every indecomposable pp-type arises in this
way. We write N(I, J) for the unique (up to isomorphism) indecomposable
pure-injective realising p〈I, J〉. Moreover, for two pairs 〈I, J〉 and 〈K,L〉
over V , N(I, J) is isomorphic to N(K,L) if and only if 〈I, J〉 ∼ 〈K,L〉.

From now on we will write (I, J) for both the equivalence class of 〈I, J〉 with
respect to ∼ and the corresponding isomorphism class of indecomposable
pure-injective modules. We will refer to (I, J) as a point or a point in
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ZgV . So, (I, J) ∈ Wa,b,g,h if and only if there exists a pair 〈K,L〉 such that
〈K,L〉 ∼ 〈I, J〉 and a /∈ K, b /∈ L, ag ∈ K and bh ∈ L. We will write N(I, J)
only when we want to emphasise that points in the Ziegler spectrum are
modules.
Let R be a commutative ring, I CR and a /∈ I. Define

(I : a) := {r ∈ V | ar ∈ I}.
It is easy to see that for I, J C V proper ideals of a valuation domain and
a /∈ J , we have that:

(1) Ia = J if and only if I = (J : a).

We can now reformulate ∼ in terms of ideal quotients (this follows directly
from (1)):
Let 〈I, J〉 and 〈K,L〉 be pairs over V . We have that 〈I, J〉 ∼ 〈K,L〉 if and
only if at least one of the following holds:

(i) there exists a /∈ K such that I = (K : a) and J = La
(ii) there exists a /∈ L such that I = Ka and J = (L : a).

Using the above observation we can now reformulate what it means for a
point in ZgV to be contained in a basic open set:

Lemma 4.4. Let a, b ∈ V \{0} and g, h ∈ m. A point (I, J) is in Wa,b,g,h if
and only if one of the following holds:

(i) there exists r /∈ I such that a /∈ (I : r), b /∈ Jr, ag ∈ (I : r) and bh ∈ Jr;
(ii) there exists s /∈ J such that a /∈ Is, b /∈ (J : s), ag ∈ Is and bh ∈ (J : s).

The lemma below shows that in fact the open sets of the form W1,λ,g,h,
where λ ∈ V \{0} and g, h ∈ m, are a basis for ZgV .

Lemma 4.5. Let a, b ∈ V \{0}, g, h ∈ m and (I, J) a point in ZgV . The
following statements are equivalent:

(i) (I, J) ∈ Wa,b,g,h,
(ii) (I, J) ∈ W1,ab,g,h,

(iii) (I, J) ∈ Wab,1,g,h.

For a proper ideal I C V , let I# be the prime ideal ∪a/∈I(I : a). Note that
for all proper ideals I, J C V , a ∈ V \{0} and b /∈ I, we have (Ia)# = I#,
(I : b)# = I# and (IJ)# = I# ∩ J# (see [FS01, Lemma 4.6] for a proof). If
p is a prime ideal then p# = p.
We will use the following simple remark without comment.

Remark 4.6. Let I CV be a non-zero proper ideal of V . The following are
equivalent:

(a) r /∈ I (b) rm ⊇ I (c) rI# ⊇ I.

Theorem 4.7. [Gre13, Theorem 4.3] Let λ ∈ V \{0} and g, h ∈ m. Let
(I, J) be a point in ZgV . The following are equivalent:

(i) (I, J) ∈ W1,λ,g,h
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(ii) λgh ∈ IJ , g ∈ I#, h ∈ J# and (I, J) ∈ W1,λ,0,0.

The condition g ∈ I# simply means that there is some non-zero element
a ∈ N(I, J) such that ag = 0. Similarly the condition h ∈ J# means
that there is some a ∈ N(I, J) which is not divisible by h. The condition
(I, J) ∈ W1,λ,0,0 =Wλ,1,0,0 means exactly that λ /∈ annVN(I, J).
Note that (I, J) ∈ W1,λ,0,0 always implies λ /∈ IJ [Gre13, Lemma 4.2] but
the converse is not always true. This motivates the following definition.

Definition 4.8. We say a point (I, J) in ZgV is normal if for all λ /∈ IJ ,
(I, J) ∈ W1,λ,0,0. Otherwise we say (I, J) is abnormal.

In terms of modules, N(I, J) is abnormal if and only if annVN(I, J) ) IJ .

Lemma 4.9. [Gre13, Lemma 4.5] Let (I, J) be a point in ZgV such that
I# 6= J#. Then for all λ ∈ V \{0}, (I, J) ∈ W1,λ,0,0 if and only if λ /∈ IJ .

That is, if I# 6= J# then (I, J) is normal.

Lemma 4.10. [Gre13, Lemma 4.9] Let (I, J) be an abnormal point with
I# = J# = p. Then (I, J) ∈ W1,λ,g,h if and only if λp ) IJ , λgh ∈ IJ ,

g ∈ I# and h ∈ J#.

Thus, up to topological indistinguishability, a point (I, J) is completely
determined by IJ , I#, J# and whether or not it is abnormal.
The following proposition determines all abnormal points up to topological
indistinguishability.

Proposition 4.11. [Gre13, Proposition 4.10] Let pC V be a prime ideal.

(i) If p2 6= p and a ∈ V \{0} then the point (p, ap) is abnormal.
(ii) For all non-zero a ∈ p there is an abnormal point (I, J) such that

IJ = ap and I# = J# = p.
(iii) Let (I, J) be an abnormal point with I# = J# = p. There exists

non-zero a ∈ p such that IJ = ap.

Lemma 4.12. Let pC V be such that p2 = p. Then, for all a ∈ V \{0}, the
point (p, ap) is normal.

Proof. Let λ ∈ V \{0}. Then (p, ap) ∈ W1,λ,0,0 if and only if there exists
t /∈ p such that λ /∈ atp. Since t /∈ p, atp = ap. Thus (p, ap) ∈ W1,λ,0,0 if
and only if λ /∈ ap = ap2. So, (p, ap) is normal. �

We are now ready to start to construct an algorithm which, given n ∈ N,
λ, µ1, .....µn ∈ V \{0} and g, h, a1, ..., an, b1, ..., bn ∈ m, answers whether

W1,λ,g,h ⊆
n⋃
i=1

W1,µi,ai,bi .

We start by showing that it is enough to check the inclusion on finitely many
subspaces of the form

Xp,q := {(I, J) ∈ ZgV | I# = p and J# = q}
8



where p, q C V are prime ideals. Moreover, we show that we can compute,
given λ, µ1, .....µn ∈ V \{0} and g, h, a1, ..., an, b1, ..., bn, a finite set of ele-
ments c1, ..., cm ∈ m such that it is enough to check the inclusion for the
subspaces Xp,q where p = rad(ciV ) and q = rad(cjV ).

Definition 4.13. Let t ∈ m. Denote by pt the smallest prime ideal contain-
ing t.

Note that, for any t ∈ m, the ideal pt exists since the ideals of a valuation
domain are totally ordered and note that pt is exactly the radical of tV .

Definition 4.14. Suppose x, y ∈ V . If x divides y in V , write y/x for the
quotient in V . We define < x, y > as

< x, y >:=

{
y/x if x|y,
x/y otherwise.

If V is effectively given then this function is computable.
We have split the proof of the following proposition into two lemmas the
first dealing with normal points and the second with abnormal points.

Proposition 4.15. Let n ∈ N, λ ∈ V \{0}, g, h ∈ m and for each natural
number 1 ≤ i ≤ n let µi ∈ V \{0}, ai, bi ∈ m. The following are equivalent:

(1)
W1,λ,g,h ⊆

n⋃
i=1

W1,µi,ai,bi

(2) For all p = rad(tV ) and q = rad(sV )

W1,λ,g,h ∩Xp,q ⊆
n⋃
i=1

W1,µi,ai,bi ∩Xp,q

where s, t ∈< T, T > ∩m and

T := {µiaibi , µi | 1 ≤ i ≤ n} ∪ {1 , λ , g , h , λgh} .

Lemma 4.16. Let n ∈ N, λ ∈ V \{0}, g, h ∈ m and for each natural number
1 ≤ i ≤ n let µi ∈ V \{0}, ai, bi ∈ m. If there exists (I, J) a normal point
such that (I, J) ∈ W1,λ,g,h and (I, J) /∈

⋃n
i=1W1,µi,ai,bi then there exists a

point (K,L) ∈ W1,λ,g,h and (K,L) /∈
⋃n
i=1W1,µi,ai,bi such that K# = pr,

L# = ps where r =< x, y >∈ m and s =< u,w >∈ m and x, y, u, w are
taken from the set

{µiaibi , µi | 1 ≤ i ≤ n} ∪ {1 , λ , g , h , λgh} .

Proof. By definition, a normal point (I, J) is such that (I, J) /∈ W1,µ,a,b if

and only if either µ ∈ IJ , µab /∈ IJ , a /∈ I# or b /∈ J#. Therefore, if
(I, J) /∈

⋃n
i=1W1,µi,ai,bi then for each 1 ≤ i ≤ n, either µi ∈ IJ , µiaibi /∈ IJ ,

ai /∈ I# or bi /∈ J#.
Suppose (I, J) ∈ W1,λ,g,h is normal and (I, J) /∈

⋃n
i=1W1,µi,ai,bi .

Let p1 ∈ {λ, µiaibi | µiaibi /∈ IJ} be such that λ divides p1 and if µiaibi /∈ IJ
then µiaibi divides p1. Note that, since (I, J) normal and (I, J) ∈ W1,λ,g,h,
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λ /∈ IJ . Thus p1 /∈ IJ . Moreover, for any ideal K C V , p1 /∈ K implies
λ /∈ K and if µiaibi /∈ IJ then µiaibi /∈ K.
Let p2 ∈ {λgh, µi | µi ∈ IJ} be such that p2 divides λgh and if µi ∈ IJ then
p2 divides µi. Note that, since (I, J) ∈ W1,λ,g,h, λgh ∈ IJ . Thus p2 ∈ IJ .
Moreover, for any ideal KCV , p2 ∈ K implies λgh ∈ K and if µi ∈ IJ then
µi ∈ K.
Since p1 /∈ IJ and p2 ∈ IJ , p2 = p1t for some t ∈ V and t ∈ (IJ)# = I#∩J#

by definition of (IJ)#.
Note that if ai /∈ I# then ai /∈ pg ∪ pt since pg ∪ pt ⊆ I# and if bi /∈ J# then

bi /∈ ph ∪ pt since ph ∪ pt ⊆ J#.
We now split the proof into two cases.

Case 1: pg ∪ pt 6= ph ∪ pt, or pg ∪ pt = ph ∪ pt and (pg ∪ pt)
2 = pg ∪ pt

The point (pg ∪ pt, p1(ph ∪ pt)) is a normal point (see lemmas 4.12 and 4.9)
and

(pg ∪ pt) · (ph ∪ pt) = (pg ∪ pt) ∩ (ph ∪ pt).

So t ∈ (pg ∪ pt) · (ph ∪ pt).
The point (pg ∪ pt, p1(ph ∪ pt)) ∈ W1,λ,g,h since g ∈ pg ∪ pt; h ∈ ph ∪ pt;
p1 /∈ p1(pg ∪ pt) · (ph ∪ pt) implies λ /∈ p1(pg ∪ pt) · (ph ∪ pt) and p2 = p1t ∈
p1(pg ∪ pt) · (ph ∪ pt) implies λgh ∈ p1(pg ∪ pt) · (ph ∪ pt).
It remains to show (pg ∪ pt, p1(ph ∪ pt)) /∈ W1,µi,ai,bi for all 1 ≤ i ≤ n.

As remarked above, if ai /∈ I# then ai /∈ (pg ∪ pt) and if bi /∈ J# then
bi /∈ (ph ∪ pt). Since p1 /∈ p1(pg ∪ pt) · (ph ∪ pt), if µiaibi /∈ IJ then
µiaibi /∈ p1(pg ∪ pt) · (ph ∪ pt). Since p2 ∈ p1(pg ∪ pt) · (ph ∪ pt), if µi ∈ IJ
then µi ∈ p1(pg ∪ pt) · (ph ∪ pt). Therefore, since (pg ∪ pt, p1(ph ∪ pt)) is a
normal point, for all 1 ≤ i ≤ n, (pg ∪ pt, p1(ph ∪ pt)) /∈ W1,µi,ai,bi .

Case 2: p := pg ∪ pt = ph ∪ pt and p2 6= p

Since p 6= p2, if K C V is such that K# = p then K = ap for some
a ∈ V \{0}. So, by proposition 4.11 (i), any point (K,L) with K# = L# = p
is necessarily abnormal.
First suppose that λgh ∈ p1p

2. Since p1 /∈ p1p, we have λ /∈ p1p. So λp ⊇
p1p ) p1p

2. By definition of p, g, h ∈ p. By lemma 4.10, (p, p1p) ∈ W1,λ,g,h.

As in the first case, if ai /∈ I# then ai /∈ p and if bi /∈ J# then bi /∈ p. If
µi ∈ IJ , then, since p2 ∈ p1p, µi ∈ p1p and hence p1p

2 ⊇ µip. If µiaibi /∈ IJ ,
then, since p1 /∈ p1p, µiaibi /∈ p1p and hence µiaibi /∈ p1p

2. So, for all
1 ≤ i ≤ n, either ai /∈ p, bi /∈ p, µiaibi /∈ p1p

2 or p1p
2 ⊇ µip. Thus, by

lemma 4.10, for all 1 ≤ i ≤ n, (p, p1p) /∈ W1,µi,ai,bi .
Now suppose that λgh /∈ p1p

2. Since h ∈ p, λg /∈ p1p. Thus p ⊇ λp ) p1p.
Therefore p1 ∈ p.
Therefore, by proposition 4.11 (iii), there exists an abnormal point (K,L)
with K# = L# = p and KL = p1p.
Since p2 ∈ p1p, λgh ∈ p1p. We have already noted that λp ) p1p. So, since
g, h ∈ p, lemma 4.10 implies that (K,L) ∈ W1,λ,g,h.
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Since p2 ∈ p1p, if µi ∈ IJ then µi ∈ p1p. Since p1 /∈ p1p, if µiaibi /∈ IJ , then
µiaibi /∈ KL. So, for all 1 ≤ i ≤ n, either ai /∈ p, bi /∈ p, µiaibi /∈ p1p or
µi ∈ p1p. Thus, by lemma 4.10 for all 1 ≤ i ≤ n, (K,L) /∈ W1,µi,ai,bi .
Finally note that pt ∪ pg = pr and pt ∪ ph = ps for some r =< x, y > and
s =< u, v > where x, y, v, u are taken from the set:

{1 , λ , g , h} ∪ {µi , µiaibi | 1 ≤ i ≤ n} . �

Lemma 4.17. Let n ∈ N, λ ∈ V \{0} and g, h ∈ m and for each natural
number 1 ≤ i ≤ n let µi ∈ V \{0} and ai, bi ∈ m. If there exists (I, J) an
abnormal point such that (I, J) ∈ W1,λ,g,h and (I, J) /∈

⋃n
i=1W1,µi,ai,bi then

there exists a point (K,L) ∈ W1,λ,g,h and (K,L) /∈
⋃n
i=1W1,µi,ai,bi such that

K# = pr L
# = ps where r =< x, y > and s =< u,w > and x, y, u, w are

taken from the set

{µiaibi , µi | 1 ≤ i ≤ n} ∪ {1 , λ , g , h , λgh} .

Proof. First note that since (I, J) is abnormal, by lemma 4.9, I# = J#. Let
p = I#.
We now choose µ, d ∈ V as follows:
Suppose there exists 1 ≤ i ≤ n such that (I, J) /∈ W1,µi,0,0. Let µ = µi0
for some 1 ≤ i0 ≤ n such that (I, J) /∈ W1,µi0 ,0,0

and µi0 divides µi for all

1 ≤ i ≤ n such that (I, J) /∈ W1,µi,0,0.
It is easy to check that if a, b ∈ V \{0} and a|b then W1,b,0,0 ⊆ W1,a,0,0. So,
for any pair (K,L) /∈ W1,µ,0,0, if 1 ≤ i ≤ n is such that (I, J) /∈ W1,µi,0,0

then (K,L) /∈ W1,µi,0,0. If for all 1 ≤ i ≤ n, (I, J) ∈ W1,µi,0,0, let µ = 0.
Suppose there exists 1 ≤ i ≤ n such that µiaibi /∈ IJ . Let d = µi0ai0bi0 for
some 1 ≤ i0 ≤ n such that µi0ai0bi0 /∈ IJ and µiaibi divides µi0ai0bi0 for all
µiaibi /∈ IJ . Note, this means for any ideal K, if d /∈ K and 1 ≤ i ≤ n is
such that µiaibi /∈ IJ then µiaibi /∈ K. If for all 1 ≤ i ≤ n, µiaibi ∈ IJ , let
d = 1.
If µ ∈ IJ then set p1 = λ if d|λ and p1 := d otherwise, set p2 := λgh if
λgh|µ and p2 := µ otherwise. Then proceed as in the proof of lemma 4.16.
Otherwise, µ /∈ IJ and (I, J) /∈ W1,µ,0,0. Thus µp ⊇ IJ and by lemma 4.10
IJ ⊇ µp. Thus λp ) µp = IJ ⊇ λghV and µ 6= 0. Note that µ ∈ p since
p ⊇ λp ) µp.
We now choose t ∈ V and γ ∈ V as follows:
Let t ∈ V be such that µ = λt and γ ∈ V such that λgh = µγ. Let
q := pt ∪ pγ ∪ pg ∪ ph. Note that t, γ, g, h ∈ p. So p ⊇ q. By proposition 4.11
and since µ ∈ q, there exists an abnormal point (K,L) such that KL = µq.
Since µ ∈ λq, λq ) µq. Further λgh ∈ µq, g ∈ q and h ∈ q. Thus
(K,L) ∈ W1,λ,g,h.
If ai /∈ p then ai /∈ q and if bi /∈ p then bi /∈ q. Since d /∈ IJ = µp, we have
that d /∈ µq. Thus, if µiaibi /∈ IJ then µiaibi /∈ µq. Finally (K,L) /∈ W1,µ,0,0.
So, if (I, J) /∈ W1,µi,0,0 then (K,L) /∈ W1,µi,0,0. Thus (K,L) /∈ W1,µi,ai,bi for
all 1 ≤ i ≤ n. �
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We now reinterpret the inclusion

W1,λ,g,h ∩Xp,q ⊆
n⋃
i=1

W1,µi,ai,bi ∩Xp,q

in terms of inclusions of intervals in the following order.

Definition 4.18. Let a, b ∈ V and pC V be prime. We write

a <p b if and only if b ∈ ap,
a =p b if and only if ap = bp and

a ≤p b if and only if a <p b or a =p b if and only if bp ⊆ ap.

Remark 4.19. (i) If Xp,p contains normal points then V together with
the order <p is dense.

(ii) If I C V and I# = p then t /∈ I and s ∈ I implies t <p s.
(iii) Let (I, J) ∈ Xp,p be abnormal. Let a ∈ p be such that IJ = ap. Let

g, h ∈ p. Then (I, J) ∈ W1,λ,g,h if and only if λ <p a <p λgh.

Proof. (i) Since Xp,p contains a normal point p2 = p (see proposition 4.11

(i) and note that if (I#)2 6= I# then I = aI# for some a ∈ V ). Suppose
a <p b. Then b ∈ ap. Let γ1, γ2 ∈ p such that b = aγ1γ2. Then b ∈ aγ1p and
aγ1 ∈ ap. So a <p aγ1 <p b.
(ii) Suppose I# = p, t /∈ I and s ∈ I. Let r ∈ V be such that tr = s. By
definition of I#, r ∈ I#. Thus s ∈ tp. So t <p s.
(iii) Suppose (I, J) ∈ Xp,p is abnormal. Then, by proposition 4.11 (iii)
IJ = ap for some a ∈ p. So by lemma 4.10 (I, J) ∈ W1,λ,g,h means exactly
that λgh ∈ IJ and λp ) IJ . Thus λgh >p a and a >p λ. �

Definition 4.20. Let pC V be prime, t ∈ V and s ∈ p. We define

(t, st)p := {r ∈ V | t <p r <p st}, and

[t, st)p := {r ∈ V | t ≤p r <p st}

Proposition 4.21. Let V be an effectively given valuation domain. Suppose
p, q C V are prime ideals and that p 6= q. Suppose λ, µ1, .....µn ∈ V \{0},
g, a1, ..., an ∈ p and h, b1, ..., bn ∈ q. Then

[λ, λgh)q∩p ⊆ ∪ni=1[µi, µiaibi)q∩p

if and only if

W1,λ,g,h ∩Xp,q ⊆
n⋃
i=1

W1,µi,ai,bi ∩Xp,q.

Proof. Because (I, J) ∈ W1,λ,g,h if and only if (J, I) ∈ W1,λ,h,g, we may
assume without loss of generality that p ( q.
Note that, by lemma 4.9 all (I, J) ∈ Xp,q are abnormal since p 6= q.
Suppose

[λ, λgh)p ⊆ ∪ni=1[µi, µiaibi)p.

We may assume that ∪ni=1[µi, µiaibi)p is an irredundant union.
12



By reordering, we may assume,

µiaibi <p µi+1ai+1bi+1

for 1 ≤ i < n.
From the irredundancy of ∪ni=1[µi, µiaibi)p and the reordering, we get that
µi <p µi+1, µ1 ≤p λ and λgh ≤p µnanbn.
Take (I, J) ∈ W1,λ,g,h ∩ Xp,q. So λ /∈ IJ and λgh ∈ IJ . We now need to
show that there exists 1 ≤ k ≤ n such that µk /∈ IJ and µkakbk ∈ IJ .
Since µ1 ≤p λ and λgh ≤p µnanbn, µ1 /∈ IJ and µnanbn ∈ IJ .
Let k be least such that µkakbk ∈ IJ . Then either k = 1 or µk−1ak−1bk−1 /∈
IJ . If k = 1, then, since µ1 /∈ IJ , (I, J) ∈ W1,µ1,a1,b1 . If µk /∈ IJ then
(I, J) ∈ W1,µk,ak,bk .
Suppose for a contradiction that µk ∈ IJ and k > 1. Then λ <p µk,
µk−1ak−1bk−1 <p µk and µk−1ak−1bk−1 <p λgh, since λ /∈ IJ , µk ∈ IJ ,
µk−1ak−1bk−1 /∈ IJ and λgh ∈ IJ .
Thus there exists d ∈ V such that λ ≤p d <p λgh and µk−1ak−1bk−1 ≤p

d <p µk. Since d <p µk, d <p µi for all i ≥ k. Since µk−1ak−1bk−1 ≤p d,
µiaibi ≤p d for all i ≤ k − 1. So d /∈ (µi, µiaibi] for all 1 ≤ i ≤ n. But,
since λ ≤p d <p λgh, d ∈ [λ, λgh). This contradicts our assumption. Thus
µk /∈ IJ . So (I, J) ∈ W1,µk,ak,bk .
Now suppose that

W1,λ,g,h ∩Xp,q ⊆
n⋃
i=1

W1,µi,ai,bi ∩Xp,q.

Suppose d ∈ [λ, λgh). Then λ /∈ dp and λgh ∈ dp. Note that dpq = dp. The
point (dp, q) is normal (lemma 4.9), since (dp)# = p 6= q. Thus, by theorem
4.7, (dp, q) ∈ W1,λ,g,h ∩ Xp,q. Thus (dp, q) ∈ W1,µk,ak,bk ∩ Xp,q for some
1 ≤ k ≤ n. So, µk /∈ dp and µkakbk ∈ dp. Thus µk ≤p d and d <p µkakbk.
So d ∈ ∪ni=1[µi, µiaibi)p. �

Corollary 4.22. Let V be an effectively given valuation domain. Suppose
p, qCV are prime ideals such that p 6= q. Suppose there is an algorithm that
given a ∈ V , answers whether a ∈ p and an algorithm that given a ∈ V ,
answers whether a ∈ q. Then for any n ∈ N there is an algorithm that given
λ, µ1, .....µn ∈ V \{0} and g, h, a1, ..., an, b1, ..., bn ∈ m, answers whether

W1,λ,g,h ∩Xp,q ⊆
n⋃
i=1

W1,µi,ai,bi ∩Xp,q.

Proof. If g /∈ p or h /∈ q then W1,λ,g,h ∩ Xp,q = ∅. So W1,λ,g,h ∩ Xp,q ⊆⋃n
i=1W1,µi,ai,bi ∩Xp,q.

Suppose g ∈ p and h ∈ q. Then (p, λq) ∈ W1,λ,g,h since g ∈ p, λ /∈ λq
and λh ∈ λq. If, for all 1 ≤ i ≤ n, either ai /∈ p or bi /∈ q then⋃n
i=1W1,µi,ai,bi ∩Xp,q = ∅. Hence W1,λ,g,h ∩Xp,q *

⋃n
i=1W1,µi,ai,bi ∩Xp,q.

Now suppose g ∈ p and h ∈ q and there exists 1 ≤ i ≤ n such that
ai ∈ p and bi ∈ q. Let J be the set of all 1 ≤ i ≤ n such that ai ∈ p
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and bi ∈ q. Then W1,λ,g,h ∩ Xp,q ⊆
⋃n
i=1W1,µi,ai,bi ∩ Xp,q if and only if

W1,λ,g,h ∩Xp,q ⊆
⋃
i∈J W1,µi,ai,bi ∩Xp,q.

By proposition 4.21, W1,λ,g,h ∩Xp,q ⊆
⋃
i∈J W1,µi,ai,bi ∩Xp,q if and only if

[λ, λgh)p∩q ⊆
⋃
i∈J [µi, µiaibi)p∩q.

The existence of an algorithm which, given a ∈ V , answers whether a ∈ p∩q
means, since V is effectively given, there exists an algorithm which, given
a, b ∈ V , answers whether a ∈ b(p ∩ q). Therefore, there is an algorithm
which given λ, µ1, ..., µk ∈ V \{0} and g, h, a1, ..., ak, b1, ..., bk ∈ p∩q, answers
whether [λ, λgh)p∩q ⊆

⋃
i∈J [µi, µiaibi)p∩q. �

Proposition 4.23. Suppose p C V is prime, n ∈ N, λ, µ1, ..., µn ∈ V \{0}
and g, h, a1, ..., an, b1, ..., bn ∈ p. Then the following are equivalent:

(1) (λ, λgh)p ⊆
n⋃
i=1

(µi, µiaibi)p

(2) W1,λ,g,h ∩Xp,p ⊆
n⋃
i=1

W1,µi,ai,bi ∩Xp,p.

Proof. (1)⇒(2) Suppose (I, J) ∈ W1,λ,g,h ∩ Xp,p is normal. Suppose, for a
contradiction, that (I, J) /∈ W1,µi,ai,bi for all 1 ≤ i ≤ n.
Let S := {1 ≤ i ≤ n | µi ∈ IJ}. Let T := {1 ≤ i ≤ n | µiaibi /∈ IJ}. Thus,
since (I, J) /∈ W1,µi,ai,bi for all 1 ≤ i ≤ n, we have that either µi ∈ IJ or
µiaibi /∈ IJ for all 1 ≤ i ≤ n. So S ∪ T = {1, 2, ..., n}.
First we show that neither S nor T is empty. Suppose S is empty. Then
µiaibi /∈ IJ for all 1 ≤ i ≤ n because S ∪ T = {1, 2, ..., n}. Since λgh ∈ IJ ,
by remark 4.19 (ii), µiaibi <p λgh for all 1 ≤ i ≤ n. This contradicts (1).
Suppose T is empty. Then µi ∈ IJ for all 1 ≤ i ≤ n. Since λ /∈ IJ , by
remark 4.19 (ii), λ <p µi for all 1 ≤ i ≤ n. This contradicts (1).
Take z1 maximal with respect to the <p order such that z1 = µiaibi for some
i ∈ T . Take z2 minimal with respect to the <p order such that z2 = µi for
some i ∈ S. Thus z1 /∈ IJ and z2 ∈ IJ . So z1 <p z2. Since λ /∈ IJ , λ <p z2.
Since λgh ∈ IJ , z1 < λgh.
By remark 4.19 (i), there exists d ∈ (z1, z2) ∩ (λ, λgh). So, using (1),
d ∈ (µi, µiaibi) for some 1 ≤ i ≤ n. But then z1 <p d <p µiaibi and
µi <p d <p z2. Thus µi /∈ IJ and µiaibi ∈ IJ .
Thus (2) holds when restricted to normal points. That (2) holds for
abnormal points too follows straightforwardly from remark 4.19 (iii).
(2)⇒(1) This follows directly from remark 4.19 (iii). �

Corollary 4.24. Let V be an effectively given valuation domain. Suppose
p C V is a prime ideal. Suppose there is an algorithm that given a ∈ V ,
answers whether a ∈ p. Then for any n ∈ N there is an algorithm that given
λ, µ1, .....µn ∈ V \{0} and g, h, a1, ..., an, b1, ..., bn ∈ m, answers whether

W1,λ,g,h ∩Xp,p ⊆
n⋃
i=1

W1,µi,ai,bi ∩Xp,p.

Proof. Almost exactly as in corollary 4.22. �
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Lemma 4.25. Let n ∈ N. Let V be an effectively given valuation domain
such that there exists an algorithm which, given a, b ∈ V , answers whether
a ∈ rad(bV ). Then there exists an algorithm which, given a, b, αi, βi ∈ V \{0}
and g, h, γi, δi ∈ m for each 1 ≤ i ≤ n, answers whether

Wa,b,g,h ⊆
n⋃
i=1

Wαi,βi,γi,δi .

Proof. First note for any a, b ∈ V \{0} and g, h ∈ m, Wa,b,g,h = W1,ab,g,h.
Suppose n ∈ N, λ, µi /∈ V \{0} and g, h, ai, bi ∈ m. Let T = {< u, v >∈
m | u, v ∈ {1 , λ , g , h , µiaibi , µi | 1 ≤ i ≤ n}}. Note that T is a finite
set and there is an algorithm which, given λ, g, h and µi, ai, bi for 1 ≤ i ≤ n,
computes T since the function < , > and multiplication of ring elements are
recursive.
Then in order to check whether

W1,λ,g,h ⊆
n⋃
i=1

W1,µi,ai,bi

by lemma 4.16 and lemma 4.17 it is enough to check

W1,λ,g,h ∩Xp,q ⊆
n⋃
i=1

W1,µi,ai,bi ∩Xp,q

for p = rad(tV ) and q = rad(sV ) for each t, s ∈ T . Note that p ( q if and
only if s /∈ rad(tV ).
By corollary 4.22 and corollary 4.24 there exists an algorithm determining
the truth of the above statement. �

Theorem 4.26. Let V be an effectively given valuation domain with an
algorithm which, given a, b ∈ V , answers whether a ∈ rad(bV ). Let n ∈ N.
Then there is an algorithm which, given ϕ/ψ a pp-pair and ϑi/ξi a pp-pair
for each 1 ≤ i ≤ n, answers whether:

(ϕ/ψ) ⊆
n⋃
i=1

(ϑi/ξi) .

Proof. By lemma 4.2, given a pp-pair ϕ/ψ we can effectively check whether
(ϕ/ψ) is non-empty.
Again using lemma 4.2, given a pp-pair ϕ/ψ, if (ϕ/ψ) is non-empty we can
effectively find aj , bj ∈ V \{0} and gj , hj ∈ m such that:

(ϕ/ψ) =
⋃
j

Waj ,bj ,gj ,hj

and for each i, if (ϑi/ξi) is non-empty we can effectively find αi,k, βi,k ∈
V \{0} and γi,k, δi,k ∈ m such that:

(ϑi/ξi) =
⋃
i,k

Wαi,k,βi,k,γi,k,δi,k
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Therefore it is enough to check for each j whether:

Waj ,bj ,gj ,hj ⊆
⋃
i,k

Wαi,k,βi,k,γi,k,δi,k .

By lemma 4.25 there exists an algorithm which determines the truth of the
above statement. �

5. Duality

In this section we will discuss the duality map for the Ziegler spectrum of
valuation domains. The results in this section are used in section 6. It
is unnecessary to invoke duality in the sense that the results of this paper
may be obtained by more elementary methods. These elementary methods
involve calculating the size of pp-quotients in certain uniserial modules (see
[Gre11]). Considering the duality map means that we have to do fewer of
these computations.
A duality between the lattice of right pp-n-formulae and the lattice of left
pp-n-formulae was first introduced by Prest [Pre88, Section 8.4] and then
extended by Herzog [Her93] to give an isomorphism between the lattice of
open sets of the left Ziegler spectrum of a ring and the lattice of open sets
of the right Ziegler spectrum of a ring.

Definition 5.1. Let ϕ be a pp-n-formula in the language of right R-modules
of the form ∃ȳ(x̄, ȳ)H = 0 where x̄ is a tuple of n variables, ȳ is a tuple of l
variables, H = (H ′ H ′′)T and H ′ (respectively H ′′) is a n×m (respectively
l×m) matrix with entries in R. Then Dϕ is the pp-n-formula in the language

of left R-modules ∃z̄
(
I H ′

0 H ′′

)(
x̄
z̄

)
= 0.

Similarly, let ϕ be a pp-n-formula in the language of left R-modules of the

form ∃ȳH
(
x̄
ȳ

)
= 0 where x̄ is a tuple of n variables, ȳ is a tuple of l

variables, H = (H ′ H ′′) and H ′ (respectively H ′′) is a m × n (respectively
m×l) matrix with entries in R. Then Dϕ is the pp-n-formula in the language

of right R-modules ∃z̄(x̄, z̄)
(

I 0
H ′ H ′′

)
= 0.

Note that the pp-formula a|x for a ∈ R is mapped by D to a formula
equivalent with respect to TR to xa = 0 and the pp-formula xa = 0 for
a ∈ R is mapped by D to a formula equivalent with respect to TR to a|x.

Theorem 5.2. [Pre88, Chapter 8] The map ϕ → Dϕ induces an anti-
isomorphism between the lattice of right pp-n-formulae and the lattice of left
pp-n-formulae. In particular, if ϕ,ψ are pp-n-formulae then D(ϕ + ψ) is
equivalent to Dϕ ∧Dψ and D(ϕ ∧ ψ) is equivalent to Dϕ+Dψ.

This gives rise “at the level of open sets” to a homeomorphism from the left
Ziegler spectrum of R to the right Ziegler spectrum of R. To be precise:
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Theorem 5.3. [Her93] The map D given on basic open sets by

(ϕ/ψ) 7→ (Dψ/Dϕ)

is a lattice isomorphism from the lattice of open sets of ZgR (respectively

RZg) to the lattice of open sets of RZg (respectively ZgR). Moreover,

D2 : ZgR → ZgR

is the identity map.

It is unknown whether this lattice isomorphism always comes from a homeo-
morphism or even if this map always comes from a homeomorphism between
ZgR and RZg after identifying topologically indistinguishable points in both
spaces.
For a commutative ring R we identify the left and right Ziegler spectra.
In the case of valuation domains we are in the lucky position of having a
very canonical homeomorphism which give rise to this map.

Proposition 5.4. Let V be a valuation domain. The map t : ZgV → ZgV :
N(I, J) 7→ N(J, I) is a well-defined homeomorphism. Moreover, t induces
the lattice isomorphism D given in theorem 5.3.

Proof. First we note that t is well-defined since 〈I, J〉 ∼ 〈K,L〉 if and only
if 〈J, I〉 ∼ 〈L,K〉.
Claim: For any a, b ∈ V \{0}, g, h ∈ m and pair of ideals (I, J), (I, J) ∈
Wa,b,g,h if and only if (J, I) ∈ Wb,a,h,g.

Suppose (I, J) ∈ Wa,b,g,h then there exists (K,L) such that (I, J) ∼ (K,L)
and a /∈ K, ag ∈ K, b /∈ L and bh ∈ L. Therefore (L,K) ∈ Wb,a,h,g and
(J, I) ∼ (L,K) so (J, I) ∈ Wb,a,h,g. The reverse direction is by symmetry.
Therefore t is a homeomorphism and

N(I, J) ∈ (xag = 0 ∧ b|x/xa = 0 + bh|x) if and only if

N(J, I) ∈ (xbh = 0 ∧ a|x/xb = 0 + ag|x) .

Since t is a homeomorphism, it induces an automorphism tlatt on the lattice
of open sets of ZgV . From the fact that D and t are equal on a basis of
the lattice of open sets of ZgV (by a basis of a lattice L we simply mean a
subset B of L such that every element of L can be written as a supremum
of elements in B) we get that tlatt and D are the same automorphism. �

We call a homeomorphism from ZgR to RZg which gives rise to the lattice
isomorphism in 5.3 a duality homeomorphism for Ziegler spectra.
The following result is essentially due to Herzog [Her93] (although it is not
explicitly stated).

Theorem 5.5. If D : ZgR →R Zg is a duality homeomorphism for Ziegler
spectra, ϕ/ψ is a pp-pair and N is a pure-injective indecomposable (right)
R-module then ∣∣∣∣ϕ(N)

ψ(N)

∣∣∣∣ =

∣∣∣∣Dψ(DN)

Dϕ(DN)

∣∣∣∣ .
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Proof. If |ϕ(N)/ψ(N)| and |Dψ(DN)/Dϕ(DN)| are always either 1 or
infinite for all pp-1-formulae ϕ,ψ then the statement is true by definition.
Suppose |ϕ(N)/ψ(N)| is finite but not equal to 1 for some pp-pair ϕ/ψ.
Then there exists a pp-pair σ/τ which is N -minimal i.e. σ(N) ) τ(N) and
for all pp-1-formulae θ, σ(N) ⊇ θ(N) ⊇ τ(N) implies either σ(N) = θ(N)
or θ(N) = τ(N). Then N is reflexive in the sense of Herzog [Her93, page
51], that is, there exists a pp-pair χ/τ such that for all indecomposable
pure-injective modules U in the closure of N (with respect to the Ziegler
topology), χ/τ is either U -minimal or χ(U) = τ(U). So, now by [Her93,
Theorem 6.6] and the modularity of the lattice of pp-formulae,∣∣∣∣ ϕ(N)

ϕ ∧ ψ(N)

∣∣∣∣ =

∣∣∣∣(ϕ+ ψ)(N)

ψ(N)

∣∣∣∣ =

∣∣∣∣ Dψ(DN)

(Dϕ ∧Dψ)(DN)

∣∣∣∣ .
�

Putting this together with proposition 5.4 we get that:

Proposition 5.6. Let V be a valuation domain. For all proper ideal I, JCV
and all pp-pairs ϕ/ψ we have that

|ϕ(N(I, J))/ψ(N(I, J))| = |Dψ(N(J, I))/Dϕ(N(J, I))| .

6. Finite invariants

We start by recalling some useful results from the model theory of modules
over valuation domains.
A module M is called uniserial if its lattice of submodules form a chain.
Clearly every submodule and quotient module of a uniserial module is also
uniserial. Less obviously we have the following theorem due to Ziegler.

Theorem 6.1. [Zie84] Every indecomposable pure-injective module over a
valuation domain is the pure-injective hull of a uniserial module and the
pure-injective hull of a uniserial module is indecomposable.

Despite pure-injective modules over valuation domains not in general being
uniserial, they are uniserial as modules over their endomorphism ring (see
[Pun01]) and thus we get the following theorem and corollary:

Theorem 6.2. [Pun01, Corollary 11.5] If M is an indecomposable pure-
injective module over a valuation domain then for any two pp-formulae
ϕ(x), ψ(x) either ϕ(M) ⊆ ψ(M) or ψ(M) ⊆ ϕ(M).

Corollary 6.3. Let N be an indecomposable pure-injective module over a
valuation domain V . If ϕ :=

∑
i ϕi and ψ := ∧jψj where ϕi and ψj are

pp-formulae then |ϕ(N)/ψ(N)| = maxi,j |ϕi(N)/ψj(N)|.

Bearing in mind that we have effective procedures for rewriting pp-formulae
in the form

∑n
i=1(xai = 0 ∧ bi|x) and

∧n
i=1(xai = 0 + bi|x) (lemma 4.1),

it is enough to consider invariant sentences of the form
∣∣∣ (xag=0)∧(b|x)

(xa=0)+(bh|x)

∣∣∣ ≥ m

where a, b ∈ V \{0} and g, h ∈ m.
18



If V is a valuation domain with infinite residue field then the only finite V -
module is the zero module. Since [PPT07] already dealt with finite invariant
sentences for valuation domains with dense value groups we won’t include
results for this case. Thus in this section we will focus on valuation domains
with non-dense value group and finite field residue field.
Let R be a commutative ring. For every indecomposable pure-injective
module N the set of r ∈ R whose action on N is not bijective is a prime
ideal of R (see for instance [Zie84, Theorem 5.4]). We call this prime ideal
the attached prime of N .
For a valuation domain V the attached prime of N(I, J) is I# ∪ J#. This
follows easily from lemma 4.3, the reformulation of the equivalence relation
∼ just after lemma 4.3 and the definition of I# and J#.

Lemma 6.4. Let V be a valuation domain with finite residue field. Let ϕ,ψ

be pp-1-formulae and let I, J C V . If
∣∣∣ϕ(N(I,J))
ψ(N(I,J))

∣∣∣ is finite and not equal to 1

then either I# = m or J# = m.

Proof. Suppose
∣∣∣ϕ(N)
ψ(N)

∣∣∣ is finite and not equal to 1. There exists a pp-1-

formula ψ′ such that ϕ(N) ) ψ′(N) ⊇ ψ(N) and ϕ/ψ′ is an N -minimal pair.

Since
∣∣∣ϕ(N)
ψ(N)

∣∣∣ is finite,
∣∣∣ ϕ(N)
ψ′(N)

∣∣∣ is finite and
∣∣∣ϕ(N)
ψ(N)

∣∣∣ is not equal to 1 because

ϕ(N) ) ψ′(N). Suppose N has attached prime p not equal to m. Then,
for all r ∈ p and all non-zero x ∈ N , xr has strictly greater pp-type than
x by [Pre88, Chapter 4 section 4.4]. Hence if x ∈ ϕ(N) then xr ∈ ψ′(N).

Therefore ϕ(N)
ψ′(N) is an V/p-module. All r /∈ p act as automorphisms on N .

Hence ϕ(N)
ψ′(N) is a Vp/p-module (i.e. vector space) and therefore infinite or

the zero module since V/p is of infinite size.

Therefore, if
∣∣∣ϕ(N)
ψ(N)

∣∣∣ is finite and not equal to 1 then its attached prime is m.

Thus, I# ∪ J# = m. Therefore either I# = m or J# = m. �

For a valuation domain V with dense value group and finite residue field
the situation is significantly simpler. If ϕ(N(I, J))/ψ(N(I, J)) is non-zero
and finite for some pp-pair ϕ/ψ then either I = am and J = bm for some
non-zero a, b ∈ V or I = aV and J = bV for some non-zero a, b ∈ m (see
[PPT07, Section 7]).
A valuation domain having non-dense value group exactly means that its
maximal ideal is principal. It is easy to derive from this that I# = m if and
only if I is principal. Thus for all ICV with I# = m there exists a ∈ m such
that (I : a) = m. Thus we need only consider finite invariant sentences for
indecomposable pure-injective modules of the form N(I,m), N(m, J) and
N(m, xV ) where x ∈ m\{0}, I# ( m and J# ( m.

Lemma 6.5. Let V be a valuation domain with residue field consisting of q
elements. Then any finite non-zero module is of size qn for some n ∈ N.
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Proof. Suppose M is a finite non-zero V -module. Let

M = Mk ) . . . )M2 )M1 ) 0 = M0

be a chain of submodules of M such that each quotient Mi+1/Mi is cyclic.
Every finite cyclic (non-zero) module is isomorphic to V/mw for some w ∈ N
and V/mw has qw elements. �

Note that the above lemma implies that for any pp-pair ϕ/ψ and any V -

module M ,
∣∣∣ϕ(M)
ψ(M)

∣∣∣ = qn for some n ∈ N0 or
∣∣∣ϕ(M)
ψ(M)

∣∣∣ is infinite.

Lemma 6.6. Let V be a valuation domain with non-dense value group and
finite residue field. Let ϕ be the pp-1-formula (xag = 0 ∧ b|x) and let ψ be
the pp-1-formula (xa = 0 + bh|x) where a, b ∈ V \{0} and g, h ∈ m. If x ∈ m
is such that N(m, xV ) ∈ (ϕ/ψ) then∣∣∣∣ϕ(N(m, xV ))

ψ(N(m, xV ))

∣∣∣∣ = min

{∣∣∣∣ VgV
∣∣∣∣ ,

∣∣∣∣ VhV
∣∣∣∣ ,

∣∣∣∣ xV

abghV

∣∣∣∣ ,

∣∣∣∣abVxV
∣∣∣∣} .

Proof. The type p(xV,m) is realised by 1 in the module V/xV . Since V/xV
is uniserial, N(xV,m) is isomorphic to the pure-injective hull of V/xV . Thus
V/xV and N(xV,m) are elementary equivalent. So we need only calculate

the size of ϕ(V/xV )
ψ(V/xV ) .

Note that, by proposition 4.11 (i) the point (xV,m) is an abnormal point
since m is principally generated and thus xV = tm for some t ∈ V \{0} and
m2 6= m. Note that abm ) xm if and only if ab /∈ xV . So, by lemma 4.10
the condition that N(m, xV ) ∈ (ϕ/ψ) means that ab /∈ xV and abgh ∈ xm.
Thus bV ⊇ (xV : a) and bhV ⊆ (xV : ag).
The solution sets of the formulae xag = 0, b|x, xa = 0 and bh|x in V/xV
are (xV : ag)/xV , bV/xV , (xV : a)/xV and (bhV + xV )/xV respectively.
Thus

∣∣∣∣ϕ(V/xV )

ψ(V/xV )

∣∣∣∣ = min

{∣∣∣∣(xV : ag)

(xV : a)

∣∣∣∣ , ∣∣∣∣(xV : ag)

bhV

∣∣∣∣ , ∣∣∣∣ bV

(xV : a)

∣∣∣∣ , ∣∣∣∣ bVbhV
∣∣∣∣} .

Since V is a domain, (xV :ag)
(xV :a)

∼= V/gV , (xV :ag)
bhV

∼= xV/abghV , bV
(xV :a)

∼=
abV/xV and bV

bhV
∼= V/hV . �

Proposition 6.7. Let V be a valuation domain with non-dense value group
and finite residue field consisting of q elements. Let ϕ be the pp-formula
(xag = 0 ∧ b|x) and let ψ be the pp-formula (xa = 0 + bh|x) where
a, b ∈ V \{0} and g, h ∈ m. Suppose I C V is a proper ideal such that
I# ( m. Then∣∣∣∣ϕ(N(I,m))

ψ(N(I,m))

∣∣∣∣ =

 1, if ab ∈ I or abgh /∈ I or g /∈ I#;
qv, if ab /∈ I, abgh ∈ I, g ∈ I# and hV = mv;
∞, otherwise.
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Proof. By lemma 6.5, if
∣∣∣ϕ(N(I,m))
ψ(N(I,m))

∣∣∣ is finite then it is either of size 1 or qv

for some v ∈ N.
From theorem 4.7 and lemma 4.9 we have that N(I,m) ∈ (ϕ/ψ) if and only

if ab /∈ I, abgh ∈ I and g ∈ I#. So
∣∣∣ϕ(N(I,m))
ψ(N(I,m))

∣∣∣ = 1 if and only if ab ∈ I or

abgh /∈ I or g /∈ I#.
We now assume that ab /∈ I, abgh ∈ I and g ∈ I#.
Note that the pp-type p(I,m) is realised by 1+I in the uniserial module V/I.
The pure-injective hulls of uniserial modules are indecomposable (theorem
6.1) and thus the pure-injective hull of V/I is isomorphic to N(I,m). Every
module is elementary equivalent to its pure-injective hull. Hence

|ϕ(V/I)/ψ(V/I)| = |ϕ(N(I,m))/ψ(N(I,m))| .

The pp-subgroup defined by (xa = 0 + bh|x) in V/I is

(I : a) + bhV

I
.

Note that bV ) I since ab /∈ I. The pp-subgroup defined by (xag = 0∧ b|x)
in V/I is

(I : ag) ∩ bV
I

.

Thus the pp-quotient defined by ϕ/ψ in V/I is

(I : ag) ∩ bV
(I : a) + bhV

.

Since V/I is uniserial,∣∣∣∣ (I : ag) ∩ bV
(I : a) + bhV

∣∣∣∣ = min

{∣∣∣∣(I : ag)

(I : a)

∣∣∣∣ , ∣∣∣∣(I : ag)

bhV

∣∣∣∣ , ∣∣∣∣ bV

(I : a)

∣∣∣∣ , ∣∣∣∣ bVbhV
∣∣∣∣} .

Thus ∣∣∣∣ (I : ag) ∩ bV
(I : a) + bhV

∣∣∣∣ = min

{∣∣∣∣ IIg
∣∣∣∣ , ∣∣∣∣ I

abghV

∣∣∣∣ , ∣∣∣∣abVI
∣∣∣∣ , ∣∣∣∣ VhV

∣∣∣∣} .
Note that any finite non-zero uniserial module is cyclic and further isomor-
phic to V/mn for some n ∈ N. Thus, since I is not principally generated,
the first three quotients are infinite. Thus∣∣∣∣ (I : ag) ∩ bV

(I : a) + bhV

∣∣∣∣ =

∣∣∣∣ VhV
∣∣∣∣ = qv

if and only if hV = mv. �

Using section 7 we get the dual statement as a corollary. This statement
could alternatively be proved by elementary but tedious calculations (see
[Gre11]). This corollary will not be used later but we include it to show
explicitly how the duality works.

21



Corollary 6.8. Let V be a valuation domain with non-dense value group
and finite residue field consisting of q elements. Let v ∈ N, let ϕ be the
pp-formula (xag = 0 ∧ b|x) and let ψ be the pp-formula (xa = 0 + bh|x)
where a, b ∈ V \{0} and g, h ∈ m. Suppose J C V is a proper ideal such that
J# ( m. Then∣∣∣∣ϕ(N(m, J))

ψ(N(m, J))

∣∣∣∣ =

 1, if ab ∈ I or abgh /∈ I or g /∈ I#;
qv, if ab /∈ J , abgh ∈ J , h ∈ J# and gV = mv;
∞, otherwise.

Proof. By proposition 5.6∣∣∣∣ϕ(N(m, J))

ψ(N(m, J))

∣∣∣∣ =

∣∣∣∣Dψ(N(J,m))

Dϕ(N(J,m))

∣∣∣∣ .
Note that Dϕ is (ag|x+xb = 0) and Dψ is a|x∧xbh = 0. Thus, proposition
6.7 gives the required statement. �

By a boolean combination of conditions on an ideal we mean a boolean
combination ∆ of conditions of the form r ∈ I and s ∈ I# where r, s ∈ V .
We will say that an ideal J C V satisfies ∆ if when we replace the symbol
I by J the statement is true. We will write ⊥ for the condition on an
ideal which is false for all ideals. In what follows, when V is an effectively
given valuation domain with non-dense value group, k will denote a fixed
generator for the maximal ideal of V .

Proposition 6.9. Let V be an effectively given valuation domain with non-
dense value group and finite residue field consisting of q elements.

(i) There exists an algorithm which, given v ∈ N and ϕ,ψ pp-1-for-
mulae, produces ∆ a boolean combination of conditions on an ideal,
such that for all I C V , I satisfies ∆ if and only if I# ( m and∣∣∣∣ϕ(N(I,m))

ψ(N(I,m))

∣∣∣∣ ≥ qv.
(ii) There exists an algorithm which, given v ∈ N and ϕ,ψ pp-1-for-

mulae, produces ∆ a boolean combination of conditions on an ideal,
such that for all J C V , J satisfies ∆ if and only if J# ( m and∣∣∣∣ϕ(N(m, J))

ψ(N(m, J))

∣∣∣∣ ≥ qv.
Proof. (i) We start with the special case where ϕ is xα = 0 ∧ β|x and ψ is
xγ = 0 + δ|x for some α, β, γ, δ ∈ V .
First note that if α /∈ γm, δ /∈ βm, γ = 0 or β = 0 then for all V -modules

M ,
∣∣∣ϕ(M)
ψ(M)

∣∣∣ = 1. We can effectively check if α /∈ γm, δ /∈ βm, γ = 0 or β = 0.

In this situation let ∆ =⊥.
Otherwise let a = γ, b = β, g = α/γ and h = δ/β.
By proposition 6.7, if I# ( m, the following statements are equivalent:

(1)
∣∣∣ϕ(N(I,m))
ψ(N(I,m))

∣∣∣ = qv.

22



(2) abgh ∈ I, ab /∈ I, g ∈ I# and h = mv.

The condition hV = mv is equivalent to kv divides h and kv+1 does not
divide h. This can be effectively checked. So, if mv 6= hV , let ∆ =⊥. If
kvV = hV , let ∆ be

(abgh ∈ I) ∧ (ab /∈ I) ∧ (g ∈ I#) ∧ (k /∈ I#).

Now suppose that ϕ and ψ are arbitrary pp-1-formulae. By lemma 4.1 we
can effectively rewrite ϕ as

∑n
i=1 ϕi where ϕi is (xai = 0 ∧ bi|x) and ψ

as
∧m
j=1 ψj where ψj is (xcj = 0 + dj |x). Then by corollary 6.3, for any

pure-injective module N∣∣∣∣ϕ(N)

ψ(N)

∣∣∣∣ = maxi,j

{∣∣∣∣ϕi(N)

ψj(N)

∣∣∣∣} .
We can now use the above special case to effectively produce an appropriate
boolean combination of conditions on an ideal.
(ii) Taking the dual of a pp-formula is clearly effective. Thus we may now
use section 5 to get the dual statements. �

Proposition 6.10. Let V be an effectively given valuation domain with an
algorithm which, given a, b ∈ V , answers whether a ∈ rad(bV ). There exists
an algorithm which, given a boolean combination of conditions on an ideal
∆, answers whether there is an ideal J C V satisfying ∆.

Proof. In order to show that we can effectively decide whether there exists
an ideal J C V satisfying a given boolean combination of conditions on an
ideal, it is enough to show that we can effectively decide whether there exists
an ideal J C V satisfying a condition of the following form:

(∗)

 k∧
g=1

rg ∈ J

 ∧( l∧
h=1

sh /∈ J

)
∧

(
m∧
i=1

ti ∈ J#

)
∧

 n∧
j=1

uj /∈ J#

 .

where k, l,m, n ∈ N and rg, sh, ti, uj ∈ V for 1 ≤ g ≤ k, 1 ≤ h ≤ l, 1 ≤ i ≤ m
and 1 ≤ j ≤ n.
Since V is a valuation domain, any finite set of ideals has a smallest and
a largest element. Let r ∈ {rg | 1 ≤ g ≤ k}, t ∈ {ti | 1 ≤ i ≤ m},
s ∈ {sh | 1 ≤ h ≤ l} and u ∈ {uj | 1 ≤ j ≤ n} be such that r generates the

ideal
∑k

g=1 rgV , t generates the ideal
∑m

i=1 tiV , s generates ∩lh=1shV and u
generates ∩nj=1ujV . The elements r, s, t and u can be found effectively.

Note that J CV satisfies (∗) if and only if r ∈ J , s /∈ J , t ∈ J# and u /∈ J#.

Claim: For any r, s, t, u ∈ V , there exists JCV such that r ∈ J , s /∈ J , t ∈ J#

and u /∈ J# if and only if s divides r, u /∈ rad(tV ) and u /∈ rad((r/s)V ).

Suppose J C V and r ∈ J , s /∈ J , t ∈ J# and u /∈ J#. Since J# is prime
and t ∈ J#, rad(tV ) ⊆ J#. Therefore u /∈ rad(tV ). Clearly s divides r. Let
γ = r/s. Then s /∈ J and γs ∈ J so γ ∈ J#. Therefore rad(γV ) ⊆ J# so
u /∈ rad(γV ).
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Suppose s divides r, u /∈ rad(tV ) and u /∈ rad((r/s)V ). Let γ = r/s and
J = s(rad(tV ) ∪ rad(γV )). Then J# = rad(tV ) ∪ rad(γV ) so t ∈ J# and
u /∈ J#. Clearly s /∈ J and γ ∈ rad(γV ) so r = sγ ∈ J . �

By a boolean combination of conditions on an element we mean a
boolean combination ∆ of conditions of the form x ∈ rV where r ∈ V . We
will say that an element w ∈ V satisfies ∆ if when we replace the symbol x
by w the statement is true. We will write ⊥ for the condition on an element
which is false for all elements.

Lemma 6.11. Let V be an effectively given valuation domain with non-
dense value group and finite residue field consisting of q elements. There
exists an algorithm which, given v ∈ N and ϕ,ψ pp-1-formulae, produces ∆,
a boolean combination of conditions on an element, such that for all x ∈ V ,
x satisfies ∆ if and only if x ∈ m and∣∣∣∣ϕ(N(m, xV ))

ψ(N(m, xV ))

∣∣∣∣ ≥ qv.
Proof. We start with the special case where ϕ is xα = 0 ∧ β|x and ψ is
xγ = 0 + δ|x for some α, β, γ, δ ∈ V .
As in proposition 6.9 if α /∈ γm, δ /∈ βm, γ = 0 or β = 0 then for all V -

modules M ,
∣∣∣ϕ(M)
ψ(M)

∣∣∣ = 1. We can effectively check if α /∈ γm, δ /∈ βm, γ = 0

or β = 0. In this situation let ∆ =⊥.
Otherwise let a = γ, b = β, g = α/γ and h = δ/β.
For x ∈ m, N(m, xV ) is an abnormal point since m2 6= m (see proposition
4.11 (i)). Thus N(m, xV ) ∈ (ϕ/ψ) is equivalent to abm ) xm and abgh ∈ xm
since g, h ∈ m. Note that since m is finitely generated, abm ) xm if and
only if ab /∈ xV .
By lemma 6.6, if N(m, xV ) ∈ (ϕ/ψ) then∣∣∣∣ϕ(N(m, xV ))

ψ(N(m, xV ))

∣∣∣∣ ≥ qv
if and only if

|V/gV | ≥ qv , |V/hV | ≥ qv , |xV/abghV | ≥ qv , |abV/xV | ≥ qv.

Note that if c, d ∈ V with d ∈ cV then |cV/dV | ≥ qv if and only if d ∈ cmv. If
g /∈ mv or h /∈ mv then let ∆ =⊥ (note that this can be effectively checked).
Otherwise, let r = g/kv (we can effectively calculate r). Note that the
condition x /∈ abrhkV is the same as abrh ∈ xV , which is the same as
abgh ∈ xkvV .
Let ∆ be

x ∈ abkvV ∧ x /∈ abrhkV.
For arbitrary pp-formulae use lemma 4.1 and corollary 6.3 as in proposition
6.9. �
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Lemma 6.12. Let V be an effectively given valuation domain. There exists
an algorithm which, given ∆ a boolean combination of conditions on an
element, answers whether there exists x ∈ V satisfying ∆.

Proof. In order to show that we can effectively decide whether there exists
x ∈ V satisfying a given boolean combination of conditions on an element, it
is enough to show that we can effectively decide whether there exists x ∈ V
satisfying a condition of the form:

∆ =
n∧
i=1

(x ∈ riV ) ∧
m∧
j=1

(x /∈ sjV )

where n,m ∈ N and ri, sj ∈ V for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Since V is a
valuation domain, ∩ni=1riV is generated by one of the ris, say r. Note that
we can effectively find such an r. Again, since V is a valuation domain, we
may effectively find s ∈ V amongst the sjs which generates ∪mj=1sjV .
There exists x satisfying ∆ if and only if there exists x ∈ V such that x ∈ rV
and x /∈ sV if and only if sV ( rV if and only if s ∈ rm. Given any r, s ∈ V
we can effectively answer whether s ∈ rm. �

7. Main theorem

Theorem 7.1. Let V be an effectively given valuation domain. The follow-
ing are equivalent:

(i) The theory of V -modules, TV , is decidable.
(ii) There exists an algorithm which, given a, b ∈ V , answers whether

a ∈ rad(bV ).

Proof. For the cases where V has infinite residue field or dense value group
we refer the reader to the proofs of Theorem 6.2 and Theorem 8.2 of
[PPT07] where the only missing ingredient for valuation domains with non-
archimedean value groups is an algorithm for answering whether one Ziegler
basic open set is contained in a finite union of others (we produced such an
algorithm in section 4).
Let V be an effectively given valuation domain with finite residue field and
non-dense value group such that there is an algorithm which, given a, b ∈ V
answers whether a ∈ rad(bV ). First note that since V is effectively given,
TV is recursively axiomatised. Hence we have an algorithm which produces
a list of all sentences true in all V -modules. In order to show that TV is
decidable, it is enough to effectively produce a list of sentences which are
true in at least one V -module. The Baur-Monk theorem means it is enough
to show that there is an algorithm which given a conjunction of invariant
sentences and negations of invariant sentences χ, answers whether there
exists a module M satisfying χ. Suppose χ is a conjunction of the following
sentences:

(1)

∣∣∣∣ϕ1
i

ψ1
i

∣∣∣∣ = qvi (2)

∣∣∣∣∣ϕ2
j

ψ2
j

∣∣∣∣∣ ≥ qwj (3)

∣∣∣∣ϕ3
k

ψ3
k

∣∣∣∣ = 1
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where l,m, n ∈ N and for all 1 ≤ i ≤ l, 1 ≤ j ≤ m, 1 ≤ k ≤ n, ϕ1
i , ψ

1
i , ϕ

2
j ,

ψ2
j , ϕ

3
k, ψ

3
k are pp-1-formulae and vi, wj ∈ N.

It is enough to consider sentences of this form as any finite V -module is
either the zero module or has qv elements for some v ∈ N, by lemma 6.5.
If τ is a conjunction of invariant sentences like those in (1), (2) and (3) then

we call
∑l

i=1 vi the exponent of the statement.

We proceed by induction on
∑l

i=1 vi.

First consider the situation when
∑l

i=1 vi = 0, that is, (1) is empty. Suppose
there exists a module M satisfying χ. We may assume M =

⊕
µ∈MNµ, for

some finite indexing set M. Therefore, for each 1 ≤ j ≤ m, there is µ ∈M
such that ∣∣∣∣∣ϕ2

j (Nµ)

ψ2
j (Nµ)

∣∣∣∣∣ > 1

and for all µ ∈M and all 1 ≤ k ≤ n,∣∣∣∣ϕ3
k(Nµ)

ψ3
k(Nµ)

∣∣∣∣ = 1.

Hence, for each 1 ≤ j ≤ m, there exists Nµ such that Nµ ∈
(
ϕ2
j/ψ

2
j

)
and

Nµ /∈
(
ϕ3
k/ψ

3
k

)
for all 1 ≤ k ≤ n. For each 1 ≤ j ≤ m, let Nj be such a

module. Then there exists t ∈ N such that
(⊕m

j=1Nj

)t
satisfies (2) and (3).

Hence, there exists a module M satisfying (2) and (3) if and only if for all
1 ≤ j ≤ m (

ϕ2
j/ψ

2
j

)
*

n⋃
k=1

(
ϕ3
k/ψ

3
k

)
.

Theorem 4.26 asserts that there exists an algorithm to check this, so we are
done.
Now suppose L :=

∑l
i=1 vi > 0, so (1) is not empty and that for any

conjunction Θ of invariant sentences and negations of invariant sentences
with exponent strictly smaller that L, there is an algorithm which answers
whether there exists a module M satisfying Θ.
Suppose there exists M satisfying χ. We may assume M =

⊕
µ∈MNµ where

M is a finite indexing set and each Nµ is an indecomposable pure-injective
module. Hence there exists µ ∈M such that

q ≤
∣∣∣∣ϕ1

1(Nµ)

ψ1
1(Nµ)

∣∣∣∣ ≤ qv1
and for all µ ∈M, for all 1 < i ≤ l and for all 1 ≤ k ≤ n∣∣∣∣ϕ1

i (Nµ)

ψ1
i (Nµ)

∣∣∣∣ ≤ qvi and

∣∣∣∣ϕ3
k(Nµ)

ψ3
k(Nµ)

∣∣∣∣ = 1.
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Let U be the set of functions u : {1, ..., l + m} → N0 ∪ {∞} such that
1 ≤ u(1) ≤ v1, for all 2 ≤ i ≤ l, 0 ≤ u(i) ≤ vi and for all 1 ≤ j ≤ m, either
0 ≤ u(l + j) < wj or u(l + j) =∞. Note that U is a finite set.
We now show that for each u ∈ U we can effectively answer whether there
exists an indecomposable pure-injective V -module satisfying the following
sentences for all 1 ≤ i ≤ l, 1 ≤ j ≤ m and 1 ≤ k ≤ n:

(i)
∣∣∣ϕ1

i

ψ1
i

∣∣∣ = qu(i).

(ii) If u(j + l) 6=∞,

∣∣∣∣ϕ2
j

ψ2
j

∣∣∣∣ = qu(j+l). Otherwise

∣∣∣∣ϕ2
j

ψ2
j

∣∣∣∣ ≥ qwj .

(iii)
∣∣∣ϕ3

k

ψ3
k

∣∣∣ = 1.

Since 1 ≤ u(1), by lemma 6.4 if I, J C V are such that N(I, J) satisfies (i),
(ii) and (iii) then either I# = m or J# = m. So, if N(I, J) satisfies (i), (ii)
and (iii), then we may assume either I = m and J = xV for some x ∈ m,
I = m and J# ( m or J = m and I# ( m.
Therefore it is enough to show how to answer the following 3 questions
effectively:

Question 1: Does there exist x ∈ m such that N(m, xV ) satisfies (i),(ii) and
(iii)?

By lemma 6.11, given any sentence
∣∣∣ϕψ ∣∣∣ ≥ qv where ϕ,ψ are pp-1-formulae

and v ∈ N we can effectively produce Ω a boolean combination of conditions
on an element such that x ∈ V satisfies Ω if and only if x ∈ m and∣∣∣ϕ(N(m,xV ))
ψ(N(m,xV ))

∣∣∣ ≥ qv. Lemma 6.11, lemma 6.5 and the fact that the statement

x ∈ m is expressed by a boolean combination of conditions on an ideal imply

that given any sentence
∣∣∣ϕψ ∣∣∣ = qv where ϕ,ψ are pp-1-formulae and v ∈ N0 we

can effectively produce Ω a boolean combination of conditions on an element

such that x ∈ V satisfies Ω if and only if x ∈ m and
∣∣∣ϕ(N(m,xV ))
ψ(N(m,xV ))

∣∣∣ = qv.

Hence we can effectively produce a boolean combination of conditions Θ on
an element x ∈ V such that x satisfies Θ if and only if x ∈ m and N(m, xV )
satisfies (i), (ii) and (iii).
By lemma 6.12, we can effectively decide whether there exists x ∈ V
satisfying Θ.

Question 2: Does there exist I C V such that I# ( m and N(I,m) satisfies
(i), (ii) and (iii)?
Note that I# ( m can be expressed by a boolean combination of conditions
on an ideal. Use proposition 6.9(i) to produce Θ a boolean condition on an
ideal such that I C V satisfies Θ if and only if I# ( m and N(I,m) satisfies
(i), (ii) and (iii). By proposition 6.10, we can effectively decide whether
there exists I C V satisfying Θ.

Question 3: Does there exist J CV such that J# ( m and N(m, J) satisfies
(i), (ii) and (iii)?
Same as question 2 replacing proposition 6.9(i) by proposition 6.9(ii).
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Let U∗ be the set of u ∈ U such that an indecomposable pure-injective N
exists satisfying (i),(ii) and (iii). If U∗ is empty then there does not exist a
module M satisfying (1), (2) and (3).
For each u ∈ U∗ we effectively produce a new list of sentences (1)u, (2)u

and (3)u. For each u start with (1)u and (2)u empty, and (3)u containing
all sentences in (3).

For each 1 ≤ i ≤ l, if u(i) < vi, add the sentence
∣∣∣ϕ1

i

ψ1
i

∣∣∣ = qvi−u(i) to (1)u.

If u(i) = vi, add the sentence
∣∣∣ϕ1

i

ψ1
i

∣∣∣ = 1 to (3)u. For each 1 ≤ j ≤ m, if

u(l + j) < wj , add the sentence

∣∣∣∣ϕ2
j

ψ2
j

∣∣∣∣ ≥ qwj−u(l+j) to (2)u.

Now there exists a module M satisfying (1), (2) and (3) if and only if there
exists a module M ′ satisfying (1)u, (2)u and (3)u for some u ∈ U∗.
Note that for each u ∈ U∗ the exponent of the conjunction of conditions in

(1)u is strictly smaller than L =
∑l

i=1 vi. Hence by the induction hypothesis,
for each u ∈ U∗ there is an algorithm which answers whether there exists a
module satisfying (1)u, (2)u and (3)u.
The other direction is lemma 3.2. �

8. An effectively given valuation domain with undecidable
theory of modules

In this section we sketch how to construct a valuation domain with infinite
Krull dimension which has decidable theory of modules with respect to one
effective presentation and undecidable theory of modules with respect to
another. We do this by constructing a recursively presented totally ordered
abelian group Γ (which is classically isomorphic to ⊕ωZ) such that the
relation � on Γ, given by a � b if and only if n|a| < |b| for all n ∈ N,
codes up a recursively enumerable but not necessarily recursive set. We
then construct an effectively given valuation domain V out of fractions of
polynomials with exponents in Γ such that the� relation on Γ becomes the
radical relation on V .
In contrast, we show that valuation domains with finite Krull dimension
have decidable theory of modules with respect to any effective presentation.

Group construction: Let f : N → N be an injective recursive function.
Let Γ be the free abelian group generated by the set {Ni|i ∈ N}∪{εi|i ∈ N}
with the relation εi = nNi holding for n ∈ N if and only if f(n) = i. Note
that for ni,mi ∈ Z

t∑
i=1

niNi +
t∑
i=1

miεi = 0

if and only if
niNi +miεi = 0

for all 1 ≤ i ≤ t. Now, for i ∈ N,

niNi +miεi = 0
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if and only if ni = mi = 0, or, mi 6= 0, −ni/mi ∈ N and

−ni/miNi = εi

if and only if ni = mi = 0, or, mi 6= 0, −ni/mi ∈ N and f(−ni/mi) = i. So
we can compute equality of elements in our group.
We now put an order on Γ. Set 0 < nNi < Nj for all n ∈ N and i < j. Set
nεi < Nj for all n ∈ N and all i < j. Set nNi < εi if i /∈ {f(1), ..., f(n)}.
Note that

t∑
i=1

niNi +

t∑
i=1

miεi > 0

if and only if there exists a 1 ≤ j ≤ t such that for all i > j

niNi +miεi = 0 and njNj +mjεj > 0.

Thus there is a recursive presentation of Γ as a totally ordered abelian
group such that the sets {Ni | i ∈ N} and {εi | i ∈ N} are recursive. Let this
recursive presentation be given by a bijective map λf : N→ Γ. Now i /∈ imf
if and only if Ni � εi. So if the image of f is recursive then the relation
� is recursive and if the image of f is not recursive then the � relation is
not. Note that this group is classically isomorphic to ⊕ωZ lexicographically
ordered.

Valuation domain construction: Let F be any recursive field. Let
π0 : N→ FΓ be a recursive presentation of the group ring FΓ such that the
map v0 : FΓ→ Γ ∪ {∞} given by∑

g∈Γ

agt
g 7→

{
min{g | ag 6= 0}, if

∑
g∈Γ agt

g 6= 0;

∞, if
∑

g∈Γ agt
g = 0

induces a recursive function via π0 and λf . The field of fractions F (Γ) of the
group ring FΓ may be coded up by pairs in FΓ (since we can decide whether
two pairs are equal we may take representatives in order to get a bijection).
Let π : N → F (Γ) be such a presentation. The map v : F (Γ) → Γ ∪ {∞}
given by v(a, b) = v0(a)− v0(b) now induces a recursive function from N to
N via π and λf .
Note that v defines a valuation on the field F (Γ) and is recursive. Thus v
defines a valuation domain V as a recursive subset (via π) of F (Γ). Therefore
we may now define a recursive presentation µ of V so that v restricted to
V is recursive via µ and λf . There is a function τ from Γ≥0 to V such that
vτ(g) = g for all g ∈ Γ≥0 which is recursive via µ and λf (simply define τ(g)
to be r ∈ V such that µ−1(r) is least such that v(r) = g).
Suppose g, h ∈ Γ≥0. Then ng < h for all n ∈ N if and only if τ(g)n /∈ τ(h)V
for all n ∈ N, which is if and only if τ(g) /∈ rad(τ(h)V ). Thus the radical
relation on V is recursive if and only if the � relation on Γ is recursive. So,
if we take f in our group construction to have recursive image then V has
decidable theory of modules with respect to µ. On the other hand, if we
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take f with non-recursive image then V has undecidable theory of modules
with respect to µ.
The same construction would still work if we replace ⊕ωZ lexicographically
ordered by ⊕ωQ lexicographically ordered. Thus non-density of the value
group is not important.
The following proposition shows that the phenomenon described above
cannot happen when the Krull dimension of V is finite.

Proposition 8.1. Let V be an effectively given valuation domain with finite
Krull dimension. Then the theory of V -modules is decidable.

Proof. Suppose V has prime ideals

pm := m ) ... ) p2 ) p1 ) p0 := 0.

For 0 ≤ i ≤ m fix bi such that rad(biV ) = pi and let bm+1 = 1. We
describe an algorithm which given a ∈ V outputs 0 ≤ i ≤ m + 1 such that
rad(aV ) = rad(biV ). If a = 0 then output 0. Now assume that a ∈ m
is non-zero and find 0 ≤ i ≤ m + 1 such that a ∈ bi+1V and a /∈ biV .
Such an i exists since a is non-zero and we can do this effectively since V is
effectively given. Thus rad(aV ) = rad(biV ) or rad(aV ) = rad(bi+1V ). Now
a ∈ rad(biV ) if and only if there exists an n ∈ N such that an ∈ biV and
bi+1 ∈ rad(aV ) if and only if there exists an n ∈ N such that bni+1 ∈ aV .
Exactly one of these two possibilities must occur. Thus, in order to check
whether rad(aV ) = rad(biV ) or rad(aV ) = rad(bi+1V ) we must for each
n ∈ N ask whether bni+1 ∈ aV or an ∈ biV .
Now if we are given a, c ∈ V we may effectively find 0 ≤ i, j ≤ m such
that rad(aV ) = rad(biV ) and rad(cV ) = rad(bjV ). So i ≤ j if and only if
a ∈ rad(cV ). �
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