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This paper is dedicated to Mike Prest on the occasion of his 65th birthday.

Abstract. We investigate the connection between Prest’s notion of the
free realisation of a pp formula and Auslander’s notion of determiners
of functor and morphisms.

The aim of this note is to explain the connections between Auslander’s
notion of morphisms and subfunctors determined by objects introduced in
[Aus78] and Prest’s notion of free realisations of pp formulae introduced in
[Pre88].

The concept of determiners of morphisms and subfunctors were largely
ignored until recently. In the last 5-10 years, effort has been made to under-
stand them (see for instance [Rin13], [Rin12], [Kra13]). On the other hand,
the algebraic study of model theory of modules is unimaginable without the
concept of free realisations of a pp formulae.

In 2.4 we explicitly describe the connection between determiners of func-
tors defined by pp formulae and free realisations of pp formulae. This will
give another proof, 2.5, of the existence of left determiners of morphisms be-
tween finitely presented modules for artin algebras. We then use determiners
and free realisations to show that if M ∈ mod-R and R is an artin algebra,
then the lattice homomorphism ppkR → ppkR(M) which sends ϕ ∈ ppkR to

ϕ(M) ∈ ppkR(M) has both a left and a right adjoint, both of which we
explicitly describe.

Finally, in section 3, we will show that pushing the ideas from section 2
slightly harder actually gives a proof of the existence of minimal left deter-
miners of morphisms between finitely presented modules for artin algebras.
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1. Basic concepts

The material in this section about morphisms and functors determined by
objects is from the introduction of [Aus78]. The material about pp formulae
and free realisations can be found in [Pre88] and [Pre09].

If R is a ring then we write Mod-R (resp. R-Mod) for the category of
right (resp. left) R-modules and mod-R (resp. R-mod) for the category of
finitely presented right (resp. left) R-modules. If C is an additive category
then (C,Ab) will denote the category with objects the additive functors and
morphisms natural transformations.

Definition 1.1. Let C be an additive category and G ∈ (C,Ab) (resp.
G ∈ (Cop,Ab)). We say that a subfunctor H ⊆ G is determined by C ∈ C
if for all subfunctors H ′ ⊆ G, H ′ ⊆ H if and only if H ′C ⊆ HC. We will
call C a determiner for H.

We will say that C is a minimal determiner for H as a subfunctor of
G, if C is a direct summand of all other determiners for H.

Definition 1.2. Let f : Y → X be a morphism in an additive category C.
(1) We say that f is right determined by C ∈ C provided that, for all

β : Z → X, if for all γ : C → Z, βγ factors through f then β factors
through f .

(2) We say that f is left determined by C ∈ C provided that, for all
β : Y → Z, if for all γ : Z → C, γβ factors through f then β factors
through f .

We will refer to C as a right (resp. left) determiner for f and say that C is
a minimal right (resp. left) determiner for f if C is a direct summand
of all other right (resp. left) determiner for f .

Lemma 1.3. Let C be an additive category.

(1) A morphism f : X → Y is right determined by C if and only if
im(−, f) is determined by C as a subfunctor of (−, Y ).

(2) A morphism f : Y → X is left determined by C if and only if
im(f,−) is determined by C as a subfunctor of (Y,−).

Remark 1.4. A morphism f : X → Y ∈ C is right determined by C ∈ C if
and only if fop : Y → X ∈ Cop is left determined by C ∈ Cop.

Let R be an Artin algebra over a commutative Artinian ring S. The
injective envelope I of S/rad(S) is a finitely presented injective cogenerator
for Mod-S. If M ∈ mod-R (resp. M ∈ R-mod) then M∗ := HomS(M, I)
is finitely presented as a left (resp. right) R-module and if f : M → N ∈
mod-R (resp. f : M → N ∈ R-mod) then write f∗ := HomS(f, I). The
contravariant functor HomS(−, I) : mod-R → R-mod gives an equivalence
of categories (mod-R)op ' R-mod.
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Specialising to the case where C := mod-R (resp. C := R-mod) and R
is an Artin algebra, 1.4 shows that for A,B ∈ mod-R, f : A → B is right
determined by X if and only f∗ : B∗ → A∗ is left determined by X∗.

Auslander showed in [Aus78], if R is an Artin algebra, then all morphisms
f : M → N ∈ mod-R have minimal right and left determiners.

Definition 1.5. Let R be a ring. A (right) pp-n-formula is a formula in
the language LR = (0,+, (·r)r∈R) of (right) R-modules of the form

∃y(x, y)H = 0

where x is a n-tuple of variables and H is an appropriately sized matrix
with entries in R.

If ϕ is a pp-n-formula and M is a module then we will write ϕ(M) for the
solution set of ϕ in Mn. Solutions sets of pp formulae have two important
(and easily checked) properties. Firstly, the solution set of a pp-n-formula
ϕ in a module M is a subgroup of Mn under pointwise addition. Sec-
ondly, if f : M → N is a homomorphism of R-modules then the image of
ϕ(M) under f is contained in ϕ(N). In this way, pp formulae give rise to
functors in (mod-R,Ab) i.e. if ϕ is a pp formula then we define a functor
Fϕ ∈ (mod-R,Ab) which acts on objects by sending M ∈ mod-R to ϕ(M)
and morphisms in the obvious way. If ϕ is a pp-n-formula, then Fϕ is a
subfunctor of the nth power of the forgetful functor (Rn,−).

These properties also imply that if M ∈ Mod-R and ϕ is a pp-n-formula
then ϕ(M) is closed under the diagonal action of End(M) on Mn.

Note also that solution sets of pp formulae commute with direct sums.
That is, if ϕ ∈ ppnR and L,M ∈ Mod-R then ϕ(L⊕M) = ϕ(L)⊕ ϕ(M).

After identifying pp-n-formulae ϕ,ψ such that ϕ(M) = ψ(M) for all
M ∈ Mod-R, the set of (equivalence classes of) pp-n-formulae becomes a
lattice by setting ϕ ≤ ψ if and only if ϕ(M) ⊆ ψ(M) for all M ∈ Mod-R.
We will write ppnR for the lattice of right pp-n-formulae and Rppn for the
lattice of left pp-n-formulae. If M ∈ Mod-R (resp. M ∈ R-Mod) then we
will write ppnR(M) (resp. Rppn(M)) for the lattice of all subgroups of Mn

defined by right (resp. left) pp-n-formulae. This is just the quotient of ppnR
(resp. Rppn) by the equivalence relation ϕ ∼ ψ if ϕ(M) = ψ(M).

If R is an Artin algebra over a commutative Artinian ring S and M is
a finitely presented R-module then all left End(M)-submodules of Mn are
also S-submodules. Since M is a finite length as S-module, Mn is finite
length as a left End(M)-module and hence ppnR(M) is finite length.

If m is an n-tuple of elements from a module M then the pp-type of m
is simply the set of pp-n-formulae ϕ such that m ∈ ϕ(M). If M ∈ mod-R
and m is an n-tuple of element from M then, [Pre09, 1.2.6], there exists
ϕ ∈ ppnR such that ψ is in the pp-type of m if and only if ψ ≥ ϕ.

Definition 1.6. Let ϕ ∈ ppnR. A free realisation of ϕ is a pair (C, c)
where C ∈ mod-R and c is an n-tuple of elements from C with the property
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that the pp-type of c in C is generated by ϕ i.e. ψ(c) holds in C if and only
if ϕ ≤ ψ.

Proposition 1.7. [Pre09, 1.2.14,1.2.7] Every pp formula ϕ has a free reali-
sation. Moreover, if (C, c) is a free realisation for ϕ and m ∈ ϕ(M) for some
module M and tuple m of elements from M then there is a homomorphism
f : C →M such that f(c) = m.

If c ∈ Cn then we write c : Rn → C for the map given by r 7→ c · r.
Equivalently, see [Pre09, 10.2.8], a free realisation is a pair (C, c) where
C ∈ mod-R and c is an n-tuple of elements from C with the property that
im(c,−) = Fϕ. This in fact implies that Fϕ is finitely presented and that
all finitely presented subfunctors of (Rn,−) are of the form Fϕ for some
ϕ ∈ ppnR.

A free realisation (C, c) of a pp formula ϕ is minimal if whenever f ∈
End(C) and the pp-type of c and f(c) are equal, f is an automorphism.
Equivalently, (c,−) : (C,−) → Fϕ is a projective cover. Over an Artin
algebra, or in fact over any Krull-Schmidt ring, all pp formulae have minimal
free realisations [Pre09, 4.3.70].

Lemma 1.8. [Pre09, 10.2.26] Let (C, c) be a minimal free realisation for
a pp formula ϕ. If (A, a) is a free realisation for ϕ then there is a split
monomorphism such g : C → A such that g(c) = a.

For each n ∈ N, Prest defined a lattice anti-isomorphism D : ppnR → Rppn

(see [Pre09, section 1.3.1] and [Pre88, 8.21]). As is standard, we denote its
inverse Rppn → ppnR also by D. Since we will not need to explicitly take the
dual of a pp formula here, we will not give its definition.

Theorem 1.9. [Her93, 3.2][Pre09, 1.3.7] Let a and b be n-tuples from M ∈
Mod-R and N ∈ R-Mod respectively. Then a ⊗ b = 0 if and only if there
exists ϕ ∈ ppnR such that a ∈ ϕ(M) and b ∈ Dϕ(N).

Corollary 1.10. If (C, c) is a free realisation of ϕ ∈ ppnR and l is an n-tuple

for L ∈ R-Mod then c⊗ l = 0 if and only if l ∈ Dϕ(L).

Lemma 1.11. [Pre09, 1.3.13] Let R be an Artin algebra, M ∈ Mod-R and
ϕ,ψ ∈ ppnR. If ψ(M) ⊆ ϕ(M) then Dϕ(M∗) ⊆ Dψ(M∗).

2. The relationship between free realisations and determiners

In this section we give a correspondence between determiners of pp for-
mulae as subfunctors of (Rn,−) and modules which free realise their dual.
We then use free realisations and determiners to define a canonical meet-
semi-lattice embedding ρM : ppkR(M) → ppkR and a canonical join-semi-

lattice embedding λM : ppkR(M)→ ppkR whenever R is an Artin algebra and
M ∈ mod-R.

Suppose that ϕ ∈ ppkR and (M,m) is a free realisation for ϕ. Then
ϕ(M) ⊆ ψ(M) implies that m ∈ ψ(M). Hence ϕ ≤ ψ. So ϕ ≤ ψ if and only
if ϕ(M) ⊆ ψ(M). The following lemma gives a partial converse to this.
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Lemma 2.1. Let M ∈ mod-R be such that pp1
R(M) has the ascending chain

condition. If ϕ ∈ ppkR is such that for all ψ ∈ ppkR, ψ(M) ⊇ ϕ(M) implies
ψ ≥ ϕ, then there exist n ∈ N and m ∈Mn such that ϕ is freely realised by
(Mn,m).

Proof. Suppose that ϕ and M are as in the statement of this lemma. We will
define a finite sequence, indexed by i, of k-tuples mi of elements from M i

such that mi ∈ ϕ(M i) and if χi generates the pp-type of mi then χi+1(M) )
χi(M). Now, since pp1

R(M) has the ascending chain condition, this process
will terminate with mn a k-tuple of elements from Mn and by the details
of the construction below, mn will be such that ϕ(M) = χn(M). So, by
hypothesis and since ϕ(M) = χn(M), χn ≥ ϕ. Since mn ∈ ϕ(Mn) and
χn generates the pp-type of mn, we have that ϕ ≥ χn. Thus ϕ = χn and
(Mn,mn) freely realises ϕ.

Pick m1 ∈ ϕ(M). If χ1(M) = ϕ(M) then we are done. Supposing that we
have already defined mi ∈M i and χi(M) ( ϕ(M), pick m′ ∈ ϕ(M)\χi(M).
Let mi+1 = mi⊕m′ ∈M i+1. Since the solution sets of pp-formulae commute
with direct sums, for all ψ ∈ ppkR, mi+1 ∈ ψ(M i+1) if and only if mi ∈ ψ(M i)

and m′ ∈ ψ(M). Thus for all ψ ∈ ppkR, mi+1 ∈ ψ(M i+1) implies ψ ≥ χi.
Thus χi+1 ≥ χi. Since m′ ∈ χi+1(M) and m′ /∈ χi(M), we have that
χi+1(M) ) χi(M) as required. �

If M ∈ Mod-R is length e as a left End(M)-module then Mk is length ek
as a left End(M)-module. Since for all ϕ ∈ ppkR, ϕ(M) is a left End(M)-

submodule of Mk, ppkR(M) is at most length ek. Thus we have the following
corollary to the proof of 2.1.

Corollary 2.2. Let M ∈ mod-R be of length e as a left End(M)-module. If
ϕ ∈ ppkR is such that for all ψ ∈ ppkR, ψ(M) ⊇ ϕ(M) implies ψ ≥ ϕ, then

there exists m ∈M ek such that ϕ is freely realised by (M ek,m).

Corollary 2.3. Let R be an Artin algebra. A pp-k-formula ϕ over R is
freely realised in Mn for some n ∈ N if and only if ϕ is freely realised in
M ek where e is the length of M as a left End(M)-module.

Theorem 2.4. Let R be an Artin algebra, ϕ a pp-k-formula and M ∈
mod-R. The following are equivalent:

(1) M∗ determines FDϕ as a subfunctor of (Rk,−)
(2) there is some n ∈ N and k-tuple m of elements from Mn such that

(Mn,m) freely realises ϕ.

Proof. (2)⇒ (1): Suppose that ϕ ∈ ppkR and (Mn,m) is a free realisation

of ϕ. If ψ ∈ ppkR then, since (Mn,m) is a free realisation of ϕ, ϕ ≤ ψ if
and only if m ∈ ψ(Mn). So ϕ(Mn) ⊆ ψ(Mn) implies m ∈ ψ(Mn) and
hence ϕ ≤ ψ. Thus ϕ ≤ ψ if and only if ϕ(Mn) ⊆ ψ(Mn) if and only if
ϕ(M) ⊆ ψ(M).

Taking duals, this gives that for all ψ ∈ ppnR, Dψ ≤ Dϕ if and only if
Dψ(M∗) ⊆ Dϕ(M∗). Since, see [Pre09, 12.2.1], all subfunctors of (Rn,−) ∈
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(R-mod,Ab) are direct unions of functors of the form FDψ, this implies that
for all G ⊆ (Rn,−), G ⊆ FDϕ if and only if GM∗ ⊆ FDϕM

∗. That is FDϕ
is determined, as a subfunctor of (Rn,−), by M∗.
(1)⇒ (2) Since M∗ is a determiner for FDϕ, we have that for all ψ ∈ ppkR,
Dψ(M∗) ⊆ Dϕ(M∗) if and only if Dψ ≤ Dϕ. So ψ(M) ⊇ ϕ(M) if and only
if ψ ≥ ϕ. Since M is a finitely presented module over an Artin algebra, it is
of finite length as a left End(M)-module. Thus, 2.1 implies there exists an
n ∈ N and k-tuple m of elements from Mn such that (Mn,m) freely realises
ϕ.

�

The following corollary explains how the existence of free realisations of
pp formulae implies the existence of left determiners for morphisms between
finitely presented modules over an Artin algebra.

Corollary 2.5. Let R be an Artin algebra, f : A → B ∈ mod-R and a a
generating tuple for A. Let ϕ generate the pp-type of f(a). If some tuple of
elements in C ∈ R-mod freely realises Dϕ then C∗ is a left determiner for
f .

Proof. Suppose that a is of length k and let g : Rk → A be the map defined
by g(r) := a · r. Since Fϕ = im(f ◦ g,−), C∗ is a determiner for im(f ◦ g,−)
as a subfunctor of (Rn,−). Since g is an epimorphism, (g,−) : (A,−) →
(Rn,−) is a monomorphism. Thus C∗ is also a determiner for im(f,−) as a
subfunctor of (A,−). �

We now discuss the relationship between minimal free realisations of ϕ ∈
ppkR and minimal determiners of FDϕ. Suppose that (C, c) is a minimal free
realisation for ϕ and D is a minimal determiner of FDϕ as a subfunctor

of (Rk,−). Then, by 1.8 and 2.4, C is a direct summand of (D∗)n for
some n ∈ N and D is a direct summand of C∗. Thus C∗ and D have the
same indecomposable direct summands. Thus if (C, c) is a minimal free

realisation for ϕ and C = C l11 ⊕ . . .⊕C lmm , where Ci ∼= Cj implies i = j, then
(C1 ⊕ . . .⊕ Cm)∗ is a minimal determiner for FDϕ.

The following lemma indicates how far 2.5 combined with minimal free
realisations is from giving us minimal left determiners.

Lemma 2.6. Let R be an Artin algebra. Let f : A → B ∈ mod-R and
g : Rn � A. If C ∈ mod-R left determines f then C ⊕ I left determines
g ◦ f where I is an injective cogenerator for mod-R.

Proof. First note that g : Rn � A is left determined by I. One way to see
this is that im(g,−) is equivalent to Fϕ for some quantifier free formula ϕ
[Pre09, 1.2.30] and thus its dual Dϕ is freely realised in a projective module
[Pre09, 1.2.29] and the dual of a projective is injective.

Now if F ⊆ (Rn,−) and F (C ⊕ I) ⊆ im(g ◦ f, C ⊕ I) then FI ⊆ im(g, I).
Thus F ⊆ im(g,−). So F is a subfunctor of im(g,−). Let F ′ ⊆ (A,−)
be the inverse image of F under (g,−). Now F (C ⊕ I) ⊆ im(g ◦ f, C ⊕ I)
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implies F ′(C) ⊆ im(f, C) since (g,−) and hence (g, C) is an embedding. So
F ′ ⊆ im(f,−). So F ⊆ im(g ◦ f,−). �

We now finish this section by defining two canonical poset embeddings
of the lattice of pp-definable subsets of finite length modules over an Artin
algebra with the first a meet semi-lattice embedding and the second a join
semi-lattice embedding.

If ϕ ∈ ppkR and M ∈ mod-R, then we will now write M determines ϕ to

mean that M determines Fϕ as a subfunctor of (Rk,−).

Lemma 2.7. Let R be an Artin algebra and M ∈ mod-R. For any χ ∈ ppkR
there exist unique ϕ,ψ ∈ ppkR such that ϕ(M) = χ(M) = ψ(M), ϕ is freely
realised in Mn for some n ∈ N and Fψ is determined by M .

Proof. We want to show that there is a ϕ ∈ ppkR such that ϕ(M) = χ(M) and
ϕ is freely realised in Mn for some n ∈ N. We will define a finite sequence,
indexed by i, of k-tuples mi of elements from M i such that mi ∈ χ(M i) and
if ϕi generates the pp-type of mi then ϕi+1(M) ) ϕi(M). Since M is finite
endolength this process must terminate with mn ∈Mn and by details of the
construction below, mn will be such that ϕn(M) = χ(M).

Pick m1 ∈ χ(M). If χ(M) = ϕ1(M) then we are done. Suppose that
we have already defined mi ∈ M i and that χ(M) ) ϕi(M). Pick m′ ∈
χ(M)\ϕi(M). Let mi+1 = mi ⊕ m′. We have that mi+1 ∈ χ(M) and
that ϕi+1 ≥ ϕi since mi ∈ ϕi+1(M). Hence, since m′ /∈ ϕi(M) and m′ ∈
ϕi+1(M), ϕi+1(M) ) ϕi(M).

Now suppose that ϕ1 and ϕ2 are both freely realised in some power of
M and that χ(M) = ϕ1(M) = ϕ2(M). Then M∗ determines Dϕ1 and
Dϕ2. Moreover Dϕ1(M

∗) = Dϕ2(M
∗) = Dχ(M∗), so Dϕ1 = Dϕ2. Thus

ϕ1 = ϕ2.
Let ψ be such that Dψ is freely realised in (M∗)n for some n ∈ N and

Dψ(M∗) = Dχ(M∗). Then M determines ψ and ψ(M) = χ(M) as required.
�

Let R be an Artin algebra and M ∈ mod-R. We define three order
preserving maps based on the above lemma.

(1) Let ρM : ppk(M) → ppkR take χ(M) to the unique ϕ ∈ ppkR such
that ϕ(M) = χ(M) and ϕ is determined by M .

(2) Let λM : ppk(M) → ppkR take χ(M) to the unique ψ ∈ ppkR such
that ψ(M) = χ(M) and ψ is freely realised in Mn for some n ∈ N.

(3) Let µM : ppkR → ppk(M) be the map taking χ ∈ ppkR to χ(M).

We will use the same notation for the left module versions of these maps.
Note that if M ∈ mod-R (resp. M ∈ R-mod), by 1.11, the duality D :
ppkR → Rppk (resp. D : Rppk → ppkR) induces a duality DM : ppkR(M) →
Rppk(M∗) (resp. DM : Rppk(M)→ ppkR(M∗)).

Lemma 2.8. Let R be an Artin algebra and M ∈ mod-R.

(i) The functions ρM , λM , µM are order preserving.
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(ii) ρM = D ◦ λM∗ ◦DM and λM = D ◦ ρM∗ ◦DM .
(iii) µM ◦ ρM = IdppkR(M) and µM ◦ λM = IdppkR(M)

(iv) For all ψ ∈ ppkR, ρM (ψ(M)) is the largest element in

{ϕ ∈ ppkR | ϕ(M) ⊆ ψ(M)}
and λM (ψ(M)) is the smallest element in

{ϕ ∈ ppkR | ψ(M) ⊆ ϕ(M)}.

(v) If the ordered sets ppkR and ppkR(M) are viewed as categories in the
usual way and λM , µM and ρM as functors then λM a µM a ρM .

(vi) ρM is a meet-semi-lattice embedding and λM is a join-semi-lattice
embedding.

Proof. (i) Suppose that ϕ,ψ ∈ ppkR and ϕ(M) ⊆ ψ(M). Then ϕ(M) =
ρM (ϕ(M))(M) ⊆ ρM (ψ(M))(M) = ψ(M) and ρM (ψ(M)) is determined by
M . So ρM (ϕ(M)) ≤ ρM (ψ(M)). Thus ρM is order preserving. That λM is
order preserving follows similarly and µM is order preserving by definition
of the order on ppkR.
(ii) We show that D ◦ ρM = λM∗ ◦ DM . From this both equalities can
be deduced. Suppose χ ∈ ppkR. Then ρM (χ(M)) is determined by M and
ρM (χ(M))(M) = χ(M). So D ◦ ρM (χ(M))(M∗) = Dχ(M∗) by 1.11 and
D ◦ ρM (χ(M)) is freely realised in (M∗)n for some n ∈ N by 2.4. Thus
D ◦ ρM (χ(M)) = λM∗(Dχ(M∗)) = λM∗ ◦DM (χ(M)).
(iv) By definition ρM (ψ(M))(M) = ψ(M) ⊆ ψ(M) and since ρM (ψ(M)) is
determined by M , ϕ(M) ⊆ ψ(M) = ρM (ψ(M))(M) implies ϕ ≤ ρM (ψ(M)).
(v) It is well known and easy to check that if g : P1 → P2 and f : P2 → P1

are functors between preordered sets viewed as categories then g is right
adjoint to f exactly if, for all a ∈ P2 and b ∈ P1, f(a) ≤ b if and only if
a ≤ g(b).

Let ϕ,ψ ∈ ppkR. If ϕ ≤ ρM (ψ(M)) then µM (ϕ) ≤ ψ(M) since µM ◦
ρM = Idpp(M). Suppose that µM (ϕ) ≤ ψ(M) i.e. ϕ(M) ⊆ ψ(M). Then
ρM (ψ(M))(M) = ψ(M) and ρM (ψ(M)) is determined by M . So ϕ ≤
ρM (ψ(M)). Thus we have shown that ρM is right adjoint to µM .
(vi) That ρM and λM are embeddings of partially ordered sets is implied by
(iii). Meets in preorders are products and joins in preorders are coproducts.
So (vi) follows directly from (v) since right adjoints preserve limits and left
adjoints preserve colimits. �

3. A proof of the existence of left determiners for morphisms

In this section we give a proof of the existence of minimal left determiners
for morphisms in mod-R when R is an Artin algebra. This proof is inspired
by 2.4 and we explain how the various steps correspond to those in 2.4.

As we have shown, the existence of minimal free realisations for pp formu-
lae comes very close to implying the existence of minimal left determiners
for morphisms in mod-R where R is an Artin algebra.
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Let R be a ring and ϕ is a pp-n-formula. Suppose f : Rn →M ∈ mod-R
and im(f,−) = Fϕ ⊆ (Rn,−). Then, by 1.10,

0 // FDϕ // Rn ⊗− ∼= (Rn,−)
f⊗− // M ⊗−

is exact. A free realisation for Dϕ(−) is just a map γ : Rn → N ∈ R-mod
such that (γ,−) : (N,−)→ (Rn,−) has image FDϕ(−) and a free realisation
is minimal if (γ,−) : (N,−) → (Rn,−) is a projective cover for its image
FDϕ(−).

Theorem 3.1. Let R be an Artin algebra. If γ : (D,−)→ ker(f ⊗−) is a
projective cover then C ∈ mod-R is a left determiner for f if and only if D∗

is a direct summand of Cn for some n ∈ N. That is, if D = Dl1
1 ⊕ . . .⊕Dlm

m ,
where Di

∼= Dj implies i = j, then (D1 ⊕ . . . ⊕ Dm)∗ is a minimal left
determiner for f .

This statement follows from [Kra13, 3.13]. However, our proofs are some-
what more elementary and our motivation for the statement and proof have
different roots.

In order to prove the above theorem we first prove 4 lemmas.
The first generalises elementary duality for pp formulae. The functor

im(g,−) plays the role of a pp formula ϕ and the functor ker(g ⊗ −) plays
the role of Dϕ.

Lemma 3.2. Let R be a ring. Let f : A→ B and g : A→ C be morphisms
in mod-R. The following are equivalent:

(1) im(g,−) ⊆ im(f,−)
(2) there exists h : B → C such that g = h ◦ f
(3) ker(f ⊗−) ⊆ ker(g ⊗−)

Proof. (1)⇒(2) Since im(g, C) ⊆ im(f, C), g ∈ im(f, C) and hence there
exists h : B → C such that g = h ◦ f .

(2)⇒(3) We have that g ⊗− = (h⊗−) ◦ (f ⊗−).
(3)⇒(1) Let d be the Auslander-Gruson-Jensen dual as in [Pre09, section

10.3]. Since d is exact and d(g ⊗−) = (g,−), the cokernel of (f,−) factors
through the cokernel of (g,−). So im(g,−) ⊆ im(f,−). �

The next lemma generalises the statement that if R is an Artin algebra,
ϕ,ψ ∈ ppkR and M ∈ mod-R then ϕ(M) ⊇ ψ(M) if and only if Dψ(M∗) ⊇
Dϕ(M∗).

Lemma 3.3. Suppose that R is an Artin algebra. Let f : A→ B, g : A→ C
be morphisms in mod-R and let D ∈ mod-R. The following are equivalent:

(1) im(g,D) ⊆ im(f,D)
(2) ker(f ⊗D∗) ⊆ ker(g ⊗D∗)

Proof. Throughout, let a be a tuple of elements from A, t ∈ D∗, ψ generate
the pp-type of f(a) and ϕ generate the pp-type of g(a). Thus, by 1.10,
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f(a) ⊗ t = 0 if and only if t ∈ Dψ(D∗) and g(a) ⊗ t = 0 if and only if
t ∈ Dϕ(D∗).
(1)⇒(2) Since im(g,D) ⊆ im(f,D),

ϕ(D) = {δga | δ ∈ (C,D)} ⊆ {γfa | γ ∈ (B,D)} = ψ(D).

Therefore, by 1.11, Dψ(D∗) ⊆ Dϕ(D∗). Suppose that a⊗ t ∈ ker(f⊗D∗) ⊆
A ⊗ D∗. Then f(a) ⊗ t = 0. So t ∈ Dψ(D∗). So t ∈ Dϕ(D∗). Thus
g(a)⊗ t = 0, that is a⊗ t ∈ ker(g ⊗D∗).
(2)⇒(1) Let a generate A. By (2), Dψ(D∗) ⊆ Dϕ(D∗). Thus

ϕ(D) = {δga | δ ∈ (C,D)} ⊆ {γfa | γ ∈ (B,D)} = ψ(D).

So, for all δ ∈ (C,D), there is a γ ∈ (B,D) such that δga = γfa. Since a
generates A, δga = γfa implies δg = γf . Thus (1) holds.

�

As we have already noted (C, c) freely realises ϕ if and only if the map
(c,−) : (C,−) → (Rn,−) has image Fϕ. So the following lemma replaces
the use of free realisations.

Lemma 3.4. Let R be a ring. Let f : A → B be a morphism in mod-R.
If D ∈ R-mod and γ : (D,−)→ ker(f ⊗−) is an epimorphism then for all
g : A→ C, we have that ker(f⊗−) ⊆ ker(g⊗−) if and only if ker(f⊗D) ⊆
ker(g ⊗D).

Proof. Let i : ker(g⊗−)→ A⊗− and j : ker(f⊗−)→ A⊗− be the kernels
of g ⊗− and f ⊗− respectively. Since γ is an epimorphism and both i and
j are monic, jγ factors through i if and only if ker(f ⊗−) ⊆ ker(g ⊗−).

We now show that ker(f ⊗D) ⊆ ker(g⊗D) implies j ◦ γ factors through
i. Since ker(f ⊗ D) ⊆ ker(g ⊗ D), there is a c ∈ ker(g ⊗ D) such that
iD(c) = (jγ)D(1D). Let π ∈ ((D,−), ker(g ⊗−)) be such that πD(1D) = c.
Now (iπ)D(1D) = (jγ)D(1D). So iπ = jγ as required. �

The following lemma is a generalisation of (1)⇒ (2) in 2.4.

Lemma 3.5. Let R be an Artin algebra over a commutative Artinian ring
S. If D∗ is a left determiner for f : A → B ∈ mod-R then there exists an
n ∈ N and an epimorphism γ : (Dn,−)→ ker(f ⊗−).

Proof. For any ring R, if A ∈ mod-R then all finitely presented subobjects
of A ⊗ − are of the form ker(g ⊗ −) for some g : A → B ∈ mod-R. This
follows from the fact that (R-mod,Ab)fp has enough injectives and that all
injectives are of the form B ⊗ − for some B ∈ mod-R (see [GJ81, 5.5],
[Pre09, 12.1.13]). Hence, all finitely presented subobjects of A ⊗ − are of
the form ker ν for some natural transformation ν : A⊗− → B⊗−. Further,
since h : A ⊗ − → B ⊗ − is the zero morphism if and only if hR = 0, all
natural transformations ν : A⊗− → B ⊗− are of the form g ⊗− for some
g : A→ B.

Suppose that D∗ is a left determiner for f : A→ B ∈ mod-R. Combining
3.2 and 3.3, we have that for all g : A→ C ∈ mod-R, ker(f⊗−) ⊆ ker(g⊗−)
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if and only if ker(f ⊗D) ⊆ ker(g ⊗D). Thus if F is any finitely presented
subfunctor of A⊗−, then ker(f ⊗−) ⊆ F if and only if ker(f ⊗D) ⊆ FD.
Since A,B ∈ mod-R and D ∈ R-mod, ker(f ⊗D) is finitely generated as a
module over S.

Let a1, ..., an generate ker(f ⊗ D) over S. For each 1 ≤ i ≤ n, let γi :
(D,−) → ker(f ⊗ −) be such that (γi)D(1D) = ai. Let γ : (Dn,−) →
ker(f ⊗−) be (γ1, ..., γn). Now the image of γD is the whole of ker(f ⊗D).
Thus the image of γ is ker(f ⊗−) as required. �

Finally we are ready to prove 3.1.

proof of 3.1. Lemma 3.4 shows that any projective (D,−) which maps epi-
morphically onto ker(f⊗−) has the property that ker(f⊗−) ⊆ ker(g⊗−) if
and only if ker(f ⊗D) ⊆ ker(g⊗D). Lemma 3.3 says that this is true if and
only if im(g,D∗) ⊆ im(f,D∗). Lemma 3.2 says that ker(f⊗−) ⊆ ker(g⊗−)
if and only if im(g,−) ⊆ im(f,−). So D∗ is a left determiner for f .

Suppose C∗ is a left determiner for f . Then, by 3.5, there is an n ∈ N and
epimorphism γ : (Cn,−) → ker(f ⊗ −). Since (D,−) is a projective cover
for ker(f ⊗ −), using general properties of projective covers, we have that
(D,−) is a direct summand of (Cn,−). Therefore D is a direct summand
of Cn. �

Corollary 3.6. Let R be an Artin algebra and f : A → B ∈ mod-R. If
−⊗D is an injective hull for coker((f,−)) then D∗ is a left determiner for
f and if C is a left determiner for f then D∗ is a direct summand of Cn for
some n ∈ N.

Proof. Apply the Auslander-Gruson-Jensen dual d as in [Pre09, Section 10.3]
to 3.1. �
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