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1. Introduction

The (right) Ziegler spectrum, ZgR, of a ring R is a topological space
attached to the (right) module category of R. The points of ZgR are
isomorphism classes of indecomposable (right) pure-injective modules
and the closed sets correspond to complete theories of modules closed
under arbitrary direct sums. This space was first introduced by Ziegler
in [Zie84].

In [Her93], Herzog showed that every irreducible closed subset of ZgR
with a countable neighbourhood basis of open sets is the closure of a
point. Thus he showed that, when R is countable, ZgR is sober. We
say a topological space is sober if every irreducible closed set C has a
generic point x, that is C is the closure of x.

In this paper, we prove that ZgR is sober when R is a Prüfer domain
with no restriction on the cardinality of R. A commutative domain
is called a Prüfer domain if its localisations at all maximal ideals are
valuation domains.
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The reason for interest in whether ZgR is sober or not is twofold.
Firstly, if viewed from the point of view of the functor category
(R-mod,Ab), its construction looks very similar to that of the Hochster
dual Spec∗R of the prime spectrum of a (commutative) ring R. That
is, the topological space with points given by isomorphism classes of
indecomposable injective modules and basis of open sets of the form

(M) := {E ∈ injR | HomR(M,E) 6= 0}

where M ranges over finitely presented modules is homeomorphic to
Spec∗R after identifying topologically indistinguishable points. The
Ziegler spectrum of a ring R can be constructed as the topological space
with set of point the indecomposable injective functors in (R-mod,Ab)
and basis of open sets given by the sets of indecomposable injective
functors F with Hom(M,F ) 6= 0 whereM is a finitely presented functor
in (R-mod,Ab). For more details of this point of view see [Pre09, §13]
and [Her97].

Secondly, Herzog [Her93] used Prest’s notion of duality for pp-form-
ulae to show that if both the right and left Ziegler spectra of a ring R
are sober then they are homeomorphic after identifying topologically
indistinguishable points. Of course, in the commutative case, the left
and right Ziegler spectra are already homeomorphic but for most com-
mutative rings it would give rise to a non-trivial automorphism of ZgR
after identifying topologically indistinguishable points.

In order to prove that ZgR is sober for a Prüfer domain R, we will
first show that the Ziegler spectrum of a valuation domain is sober. In
order to do this we use a reformulation of ZgV , where V is a valuation
domain, in terms of equivalence classes of pairs of ideals (see [Pun99]).

We would like to draw attention to the simple but sometimes use-
ful observation that the Ziegler spectrum of a valuation domain can
be completely reformulated in terms of its value group and thus two
valuation domains with isomorphic value groups have homeomorphic
Ziegler spectra. This perspective can be very useful when working with
examples.

2. Background

For general background on Model theory of Modules see [Pre88].
Let R be a ring. Let LR := (0,+, (r)r∈R) be the language of (right)

R-modules. A (right) pp-formula (in one variable) is a formula of
the form ∃y yA = xb where n,m are natural numbers, A is an n ×m
matrix and b is a row vector of length m, both with entries from R,
and y is an n-tuple of variables.
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The solution set ϕ(M) of a pp-formula ϕ in an R-module M is a sub-
group of M . If we cosmetically weaken our definition of a pp-formula
to include all formulae (in one variable) in the language of (right) R-
modules, LR, which are equivalent over the theory of R-modules, TR,
to a pp-formula then the TR-equivalence classes of pp-formulae become
a lattice under implication with the join of two formulae ϕ, ψ given by

(ϕ+ ψ)(x) := ∃y, z(x = y + z ∧ ϕ(y) ∧ ψ(z))

and the meet given by ϕ ∧ ψ.
A pp-type is a set of pp-formulae. If M is an R-module and a ∈M

then the set of pp-formulae satisfied by a in M is called the pp-type of
a. We say a pp-type is complete if it is the pp-type of an element of a
module or equivalently if it is closed under implications (with respect
to the theory of all R-modules) and conjunctions.

A pure-embedding between two modules is an embedding which
preserves the solution sets of pp-formulae. We say a module N is pure-
injective if for every pure-embedding g : N → M , the image of N in
M is a direct summand of M .

The Ziegler spectrum of a ring R, denoted ZgR, is a topological
space whose points are isomorphism classes of indecomposable pure-
injective modules and which has a basis of open sets given by:

(ϕ/ψ) = {M | ϕ(M) ) ψ(M) ∧ ϕ(M)}
where ϕ, ψ range over pp-formulae.

A commutative integral domain V is called a valuation domain if
the lattice of ideals of V is a chain. Note that this implies that a subset
I of V is an ideal of V if and only if for all r ∈ V and a ∈ I, ar ∈ I.

Lemma 2.1. [EH95][Pun92] Every pp-formula over a valuation do-
main V is equivalent to a pp-formula of the form

n∧
i=1

(ai|x) + (xbi = 0)

where n ∈ N and ai, bi ∈ V and a pp-formula of the form
m∑
j=1

(cj|x) ∧ (xdj = 0)

where m ∈ N and cj, dj ∈ V .

Lemma 2.2. [Pun99] The collection of open sets

Wa,b,g,h :=

(
(xag = 0) ∧ (b|x)

(xa = 0) + (bh|x)

)
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for non-zero a, b ∈ V and g, h ∈ m form a basis for ZgV .

A pair over a valuation domain is a pair of proper ideals 〈I, J〉. To
each pair over V , we can associate a pp-type

p〈I, J〉 = {xb = 0 | b ∈ I} ∪ {a|x | a /∈ J}.

Recall that every complete pp-type is realised in a (unique up to iso-
morphism) minimal pure-injective module, denoted N(p). We say a
complete pp-type is indecomposable if N(p) is indecomposable. We
say that 〈I, J〉 ∼ 〈K,L〉 if there exists non-zero a, b ∈ R such that at
least one of the following holds:

(1) Ia = K and J = La or
(2) I = Ka and Ja = L.

Lemma 2.3. [Pun99] Every pp-type p〈I, J〉 has a unique extension to
a complete indecomposable pp-type and every indecomposable pp-type
arises in this way. We write N〈I, J〉 for the unique (up to isomor-
phism) indecomposable pure-injective realising 〈I, J〉. Moreover, for
two pairs 〈I, J〉 and 〈K,L〉 over V , N〈I, J〉 is isomorphic to N〈K,L〉
if and only if 〈I, J〉 ∼ 〈K,L〉.

From now on we will write (I, J) for both the equivalence class
of 〈I, J〉 and the corresponding isomorphism class of indecomposable
pure-injective modules. We will refer to (I, J) as a point or a point in
ZgV . So, (I, J) ∈ Wa,b,g,h if and only if there exists a pair 〈K,L〉 such
that 〈K,L〉 ∼ 〈I, J〉 and a /∈ K, b /∈ L, ag ∈ K and bh ∈ L.

3. Ideal quotients, attached primes, value groups and
examples

Throughout this section R will be a commutative ring. For the rest
of this paper V will be a valuation domain with maximal ideal m.

In this section we collect together results on the ideal theory of val-
uation domains which we will later need. We start by recalling facts
about the ideal quotient.

Recall that given ideals I, J C R, the ideal quotient is defined to
be the ideal

(I : J) := {a ∈ R | Ja ⊆ I} .
For I CR and a ∈ R, we will write (I : a) for (I : Ra).

Directly from the definition of the ideal quotient we get that: for all
I, J,K CR,

(1) IJ ⊆ K if and only if I ⊆ (K : J).
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For a valuation domain V we trivially also get that: for all I, J,KCV ,

(2) IJ ) K if and only if I ) (K : J).

It is easy to see that for I, JCV proper ideals of a valuation domain
and a /∈ J , we have that:

(3) Ia = J if and only if I = (J : a).

We can now reformulate ∼ in terms of ideal quotients: Let 〈I, J〉
and 〈K,L〉 be pairs over V . We have that 〈I, J〉 ∼ 〈K,L〉 if and only
if at least one of the following holds:

(i) there exists a /∈ K such that I = (K : a) and J = La
(ii) there exists a /∈ J such that I = Ka and J = (L : a).

Using the above observation we can now reformulate what it means
for a point in ZgV to be contained in a basic open set:

Lemma 3.1. Let a, b ∈ V \{0} and g, h ∈ m. A point (I, J) ∈ Wa,b,g,h

if and only if one of the following holds:

(i) there exists r /∈ I such that a /∈ (I : r), b /∈ Jr, ag ∈ (I : r) and
bh ∈ Jr;

(ii) there exists s /∈ J such that a /∈ Is, b /∈ (J : s), ag ∈ Is and
bh ∈ (J : s).

Let Q be the field of fractions of V , Γ the value group of V and
v : Q → Γ ∪ {∞} the valuation map. Recall, [FS01, §II Prop3.4], the
bijective correspondence between the set of the proper ideals of V and
the strictly positive upsets of Γ ∪ {∞} given by

I C V 7→ v(I).

The inverse map maps a strictly positive upset F to v−1(F ).
Note that, if I C V is a proper ideal, r /∈ I and s ∈ V \{0} then

v((I : r)) = v(I)− v(r)

and
v(Is) = v(I) + v(s).

Thus, our equivalence relation ∼ on pairs over V corresponds exactly to
an equivalence relation ≈ on pairs of strictly positive upsets of Γ∪{∞}
given by:
〈E,F 〉 ≈ 〈G,H〉 if at least one of the following holds:

(i) There exists positive γ /∈ G such that E = G−γ and F = H+γ
(ii) There exists positive γ /∈ H such that E = G+γ and F = H−γ

Moreover, given a pair 〈I, J〉 over V , a, b ∈ V \{0} and g, h ∈ m we
have that (I, J) ∈ Wa,b,g,h if and only if at least one of the following
holds:
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(i) there exists r ∈ V with v(r) /∈ v(I) such that
v(a) /∈ v(I)− v(r), v(b) /∈ v(J) + v(r), v(ag) ∈ v(I)− v(r) and
v(bh) ∈ v(J) + v(r);

(ii) there exists s ∈ V with v(s) /∈ v(J) such that
v(a) /∈ v(I) + v(s), v(b) /∈ v(J)− v(s), v(ag) ∈ v(I) + v(s) and
v(bh) ∈ v(J)− v(s).

Thus we have the following theorem.

Theorem 3.2. Let Γ be the value group of V . For a pair 〈E,F 〉 of
strictly positive upsets of Γ∪{∞} we denote by (E,F ) the ≈-equivalence
class of 〈E,F 〉.

For α, β ∈ Γ with α, β ≥ 0 and γ, δ ∈ Γ ∪ {∞} with γ, δ > 0,
let Uα,β,γ,δ be the set of ≈-equivalence classes of pairs of strictly posi-
tive upsets (E,F ) such that there exists a pair 〈G,H〉 in the same ≈-
equivalence class as 〈E,F 〉 with α /∈ G, β /∈ H,α + γ ∈ G and β + δ ∈
H.

Let ZgΓ be the topological space with points ≈-equivalence classes of
pairs of strictly positive upsets of Γ∪ {∞} and basic open sets Uα,β,γ,δ.

The map T : ZgV → ZgΓ given by:

(I, J) 7→ (v(I), v(J))

is a homeomorphism.

Corollary 3.3. If two valuation domains have isomorphic value groups
then they have homeomorphic Ziegler spectra.

We will now use this perspective to give two examples of Ziegler spec-
tra of valuation domains, describing the specialisation between points.
We say that a point a in a topological space T specialises to a point
b ∈ T if b is in the closure of a.

Example 3.4. Let V be a valuation domain with value group R under
addition. The strictly positive upsets of R ∪ {∞} are all of one of the
following forms:

(1) F>ε := {x ∈ Γ | x > ε} ∪ {∞} for some ε ≥ 0
(2) F≥ε := {x ∈ Γ | x ≥ ε} ∪ {∞} for some ε > 0
(3) {∞}

Thus pairs of upsets are all of one of the following forms:

(i) 〈F>ε1 , F>ε2〉 for ε1, ε2 ∈ R≥0

(ii) 〈F>ε1 , F≥ε2〉 for ε1 ∈ R≥0 and ε2 ∈ R>0

(iii) 〈F>ε1 , {∞}〉 for ε1 ∈ R≥0

(iv) 〈F≥ε1 , F≥ε2〉 for ε1 ∈ R>0 and ε2 ∈ R>0

(v) 〈F≥ε1 , F>ε2〉 for ε1 ∈ R>0 and ε2 ∈ R≥0
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(vi) 〈F≥ε1 , {∞}〉 for ε1 ∈ R>0

(vii) 〈{∞}, F>ε2〉 for ε2 ∈ R≥0

(viii) 〈{∞}, F≥ε2〉 for ε2 ∈ R>0

(ix) 〈{∞}, {∞}〉
Each ≈-equivalence class only contains pairs of at most one of the

above forms.
We start by discussing points of the form (iii), (vi), (vii), (viii) and

(ix).
We have that: 〈F>ε1 , {∞}〉 ≈ 〈F>ε′1 , {∞}〉 for all ε1, ε

′
1 ∈ R≥0 and

thus, for α, β ∈ R≥0 and γ, δ ∈ R>0 ∪ {∞},
(F>ε1 , {∞}) ∈ Uα,β,δ,γ

if and only if
γ =∞.

Symmetrically, we have that: 〈{∞}, F>ε1〉 ≈ 〈{∞}, F>ε′1〉 for all
ε1, ε

′
1 ∈ R≥0 and thus, for α, β ∈ R≥0 and γ, δ ∈ R>0 ∪ {∞},

({∞}, F>ε1) ∈ Uα,β,δ,γ
if and only if

δ =∞.
We have that: 〈F≥ε1 , {∞}〉 ≈ 〈F≥ε′1 , {∞}〉 for all ε1, ε

′
1 ∈ R>0 and

thus, for α, β ∈ R≥0 and γ, δ ∈ R>0 ∪ {∞},
(F≥ε1 , {∞}) ∈ Uα,β,δ,γ

if and only if
γ =∞.

Symmetrically, we have that: 〈{∞}, F≥ε1〉 ≈ 〈{∞}, F≥ε′1〉 for all
ε1, ε

′
1 ∈ R>0 and thus, for α, β ∈ R≥0 and γ, δ ∈ R>0 ∪ {∞},

({∞}, F≥ε1) ∈ Uα,β,δ,γ
if and only if

δ =∞.
The point ({∞}, {∞}) is a singleton ≈-equivalence class and thus,

for α, β ∈ R≥0 and γ, δ ∈ R>0 ∪ {∞},
({∞}, {∞}) ∈ Uα,β,γ,δ

if and only if
γ =∞ and δ =∞.

Thus up to topological indistinguishability we have 3 points of the
forms (iii), (vi), (vii), (viii) and (ix). The point ({∞}, {∞}) is spe-
cialised to by the other two points. There is no other specialisation
involving these points.
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We now consider the remaining points. We first state some facts
which can be easily proved using the density of R.

Let α, β ∈ R, γ, δ ∈ R>0 ∪ {∞} and ε1, ε2 ∈ R.

(1) There exists µ ∈ R such that

α ≤ ε1 + µ < α + γ

and

β ≤ ε2 − µ < β + δ

if and only if

α + β ≤ ε1 + ε2 < (α + γ) + (β + δ).

(2) There exists µ ∈ R such that

α < ε1 + µ ≤ α + γ

and

β < ε2 − µ ≤ β + δ

if and only if

α + β < ε1 + ε2 ≤ (α + γ) + (β + δ).

(3) There exists µ ∈ R such that

α ≤ ε1 + µ < α + γ

and

β < ε2 − µ ≤ β + δ

if and only if

α + β < ε1 + ε2 < (α + γ) + (β + δ).

Using (1), a point of the form (F>ε1 , F>ε2) ∈ Uα,β,γ,δ, for α, β ∈ R≥0

and γ, δ ∈ R>0 ∪ {∞}, if and only if

ε1 + ε2 ∈ [α + β, (α + γ) + (β + δ)).

We label the point (F>ε1 , F>ε2) as (ε1 + ε2)+.
Using (2), a point of the form (F≥ε1 , F≥ε2) ∈ Uα,β,γ,δ, for α, β ∈ R≥0

and γ, δ ∈ R>0 ∪ {∞},
ε1 + ε2 ∈ (α + β, (α + γ) + (β + δ)].

We label the point (F≥ε1 , F≥ε2) as (ε1 + ε2)−.
Using (3), a point of the form 〈F≥ε1 , F>ε2〉 or a point of the form
〈F>ε1 , F≥ε2〉, for α, β ∈ R≥0 and γ, δ ∈ R>0 ∪ {∞}, if and only if

ε1 + ε2 ∈ (α + β, (α + γ) + (β + δ)).

We label the point (F≥ε1 , F>ε2) as (ε1 + ε2).
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Thus (ε1 + ε2)+ and (ε1 + ε2)− specialise to (ε1 + ε2). The point 0+

is a closed point. This is the only specialisation amongst points of this
form.

The following diagram shows the Ziegler spectrum of a valuation do-
main with value group R with the points ({∞}, {∞}), ({∞}, F>ε) and
(F>ε, {∞}) removed. The oscillating lines show the specialisation be-
tween lines. The brackets show a typical open set.

(ε1 + ε2)−
R>0 ( ]

(ε1 + ε2)+

R≥0[ )

(ε1 + ε2)

R>0( )

Example 3.5. Let V be a valuation domain with value group Z under
addition. The strictly positive upsets of Z ∪ {∞} are all of one of the
following forms:

(1) F≥n := {x ∈ Z | x ≥ n} ∪ {∞} for n ∈ Z>0

(2) {∞}
Thus pairs of upsets are all of one of the following forms:

(i) 〈F≥n1 , F≥n2〉 for n1, n2 ∈ Z>0

(ii) 〈F≥n1 , {∞}〉 for n1 ∈ Z>0

(iii) 〈{∞}, F≥n2〉 for n2 ∈ Z>0

(iv) 〈{∞}, {∞}〉
Each ≈-equivalence class only contains pairs of at most one of the

above forms.
It is easy to see that, for n1, n2, n

′
1, n

′
2 ∈ Z>0,

〈F≥n1 , F≥n2〉 ≈ 〈F≥n′
1
, F≥n′

2
〉

if and only if
n1 + n2 = n′1 + n′2.

Thus, for α, β ∈ Z≥0 and γ, δ ∈ Z>0 ∪ {∞},
(F≥n1 , F≥n2) ∈ Uα,β,γ,δ

if and only if

α + β + 1 < n1 + n2 and α + γ + β + δ ≥ n1 + n2.

For all n1, n
′
1 ∈ Z>0,

〈F≥n1 , {∞}〉 ≈ 〈F≥n2 , {∞}〉
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and thus for α, β ∈ Z≥0 and γ, δ ∈ Z>0 ∪ {∞},
(F≥n1 , {∞}) ∈ Uα,β,δ,γ

if and only if
γ =∞.

Symmetrically, for all n1, n
′
1 ∈ Z>0,

〈{∞}, F≥n1〉 ≈ 〈{∞}, F≥n2〉
and thus for α, β ∈ Z≥0 and γ, δ ∈ Z>0 ∪ {∞},

({∞}, F≥n1) ∈ Uα,β,δ,γ
if and only if

δ =∞.
The pair 〈{∞}, {∞}〉 is a singleton ≈-equivalence class and for all

α, β ∈ Z≥0 and γ, δ ∈ Z>0 ∪ {∞},
({∞}, {∞}) ∈ Uα,β,γ,δ

if and only if
γ =∞ and δ =∞.

Thus we see that for a valuation domain with value group Z, the
points of the form (F≥n1 , F≥n2) (with n1, n2 ∈ Z>0) are closed points
and the points ((F≥n1), {∞}) and ({∞}, F≥n2) (with n1, n2 ∈ Z>0) spe-
cialise to the point ({∞}, {∞}).

We now turn to the attached prime of an irreducible ideal. A proper
ideal I CR is irreducible if it is not the intersection of any two ideals
properly containing it.

Definition 3.6. Let R be a commutative ring and I C R a proper
irreducible ideal. We call the prime ideal

I# =
⋃
r/∈I

(I : r)

the attached prime of I.

It is easy to see that for any irreducible ideal I C R, I# really is a
prime ideal and that the attached prime of a prime ideal is itself [Fuc50].
Note that for valuation domains all proper ideals are irreducible.

We take our notation for the attached prime from [FS01]. Our defi-
nition of the attached prime of an ideal differs from the definition given
in [FS01] (where it is only defined for valuation domains) but lemma
3.7(i) states that, for valuation domains, it is equivalent. The following
lemma collects together properties of the attached prime of a proper
ideal of a valuation domain.
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Lemma 3.7. Let V be a valuation domain and let I, J be proper ideals
of V .

(i) If I 6= 0 then r ∈ I# if and only if Ir ( I;
(ii) If I 6= 0 then r ∈ I# if and only if I ( (I : r);

(iii) if I# ) J# then there exists r /∈ I such that (I : r) ) J ;
(iv) if I ) J# then IJ = J ;
(v) I# ∩ J# = (IJ)#;

(vi) for a /∈ I, (I : a)# = I#

(vii) for non-zero a ∈ V , (aI)# = I#

Proof. (i) This follows directly from the definition of attached prime
and that the ideals of a valuation domain are totally ordered.

(ii) follows from (i) and the fact that, for all r /∈ I, (I : r)r = I.
(iii) Take s ∈ I#\J#. Since the ideals of V are totally ordered, there

exists r /∈ I such that s ∈ (I : r). So (I : r) ⊇ sV ⊇ J#.
(iv) Suppose j ∈ J . Take r ∈ I\J#. Since r /∈ J , there exists µ ∈ V

such that rµ = j. Since r /∈ J#, µ ∈ J , so that j = rµ ∈ IJ .
(v) is [FS01] Lemma 4.6.
(vi) and (vii) are encapsulated by [FS01] lemma 4.3 (ii). �

The following simple lemma will be used repeatedly without note.

Lemma 3.8. Let I C V a proper ideal of V . The following are equiv-
alent:

(i) r /∈ I
(ii) rm ⊇ I

(iii) rI# ⊇ I

Lemma 3.9. Suppose that 〈I, J〉, 〈K,L〉 are pairs over V and 〈I, J〉 ∼
〈K,L〉. Then I# = K#, J# = L# and IJ = KL.

Proof. Since 〈I, J〉 ∼ 〈K,L〉, one of the following holds:

(i) there exists a /∈ K such that I = (K : a) and J = La
(ii) there exists a /∈ J such that I = Ka and J = (L : a).

Suppose (i) holds. Then IJ = (K : a)La = KL because, by (3),
page 5, (K : a)a = K and I# = (K : a)# = K# and J# = (La)# = L#

by lemma 3.7 (vi) and (vii). �

Lemma 3.10. Let V be a valuation domain, p a non-zero prime ideal
and a ∈ p. Then

Ipa =
⋃
x/∈p

(aV : x)

is the pre-image of the ideal generated by a in Vp. Moreover, Ipa is an
ideal in V and Ipa = Ipb if and only if a = bc or b = ac for some c /∈ p.
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Proof. Let π : V → Vp be the localisation map. For all x ∈ V , π(x) ∈
π(a)Vp if and only if x = ar/s for some r ∈ V and s /∈ p, that is exactly
if there exists s /∈ p such that x ∈ (aV : s). So we have shown the first
statement. That Ipa is an ideal of V follows from this.

Let a, b ∈ p. Then Ipa = Ipb if and only if π(a)Vp = π(b)Vp, that is if
and only if a = bc or b = ac for some c /∈ p. �

Lemma 3.11. Let V be a valuation domain, p a non-zero prime ideal
b ∈ V \{0} and a ∈ p\{0}. Then Ipab = bIpa, (Ipa)

# = p and Ipap = ap.

Proof. First we show that Ipab = bIpa. Note that, by (3), page 5, if
a, b ∈ V \{0} and x /∈ aV then (abV : x) = b(aV : x). Using the
original definition of Ipa, we have that

Ipa · b =

⋃
x/∈p

(aV : x)

 · b =
⋃
x/∈p

((aV : x) · b) =
⋃
x/∈p

(abV : x).

So Ipab = Ipab.
Now c · Ipa = Ipca = Ipa if and only if π(ca) and π(a) generate the same

ideal in Vp where π is the localisation map. So c /∈ (Ipa)
# if and only if

c /∈ p. Therefore p = (Ipa)
#.

Since a ∈ Ipa, we have that ap ⊆ Ipap. Suppose c ∈ Ipa. There exists
x /∈ p such that cx ∈ aV . Therefore cxp ∈ ap for all p ∈ p. But since
x /∈ (ap)# = p, cp ∈ ap. �

4. Open sets

In this section we will simplify the conditions for a point to be contained
in a basic open set. We will first show that every basic open set is equal
to a basic open set of the form W1,λ,g,h. We will then reformulate the
condition (I, J) ∈ W1,λ,g,h in terms of conditions on IJ , I#, J# and
whether (I, J) ∈ W1,λ,0,0. Finally, we will then consider the condition
(I, J) ∈ W1,λ,0,0.

Lemma 4.1. Let a, b ∈ V \{0}, g, h ∈ m and (I, J) a point in ZgV .
The following statements are equivalent:

(i) (I, J) ∈ Wa,b,g,h.
(ii) (I, J) ∈ W1,ab,g,h.

(iii) (I, J) ∈ Wab,1,g,h.

Proof. We will show that (i) and (ii) are equivalent. That (iii) is
equivalent to (i) follows from the left-right symmetry of Wa,b,g,h, that
is (I, J) ∈ Wa,b,g,h if and only if (J, I) ∈ Wb,a,h,g.

First suppose that (I, J) ∈ Wa,b,g,h. Therefore, there exists a pair
〈K,L〉 equivalent to 〈I, J〉 such that a /∈ K, ag ∈ K, b /∈ L and bh ∈ L.
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Since a /∈ K, 〈(K : a), aL〉 ∼ 〈K,L〉 ∼ 〈I, J〉. Now 1 /∈ (K : a),
g ∈ (K : a), ab /∈ aL and abh ∈ aL. Therefore (I, J) ∈ W1,ab,g,h.

Now suppose that (I, J) ∈ W1,ab,g,h. As above this means that there
exists 〈K,L〉 equivalent to 〈I, J〉 such that 1 /∈ K, g ∈ K, ab /∈ L and
abh ∈ L. Clearly a /∈ L. Therefore 〈aK, (L : a)〉 is equivalent to 〈I, J〉.
We have that a /∈ aK because V is a domain and it is clear that ag ∈
aK, b /∈ (L : a) and bh ∈ (L : a). Therefore (aK, (L : a)) ∈ Wa,b,g,h. So
(I, J) ∈ Wa,b,g,h. �

The lemma above means that from now on we need only consider basic
open sets of the form W1,λ,g,h.

Lemma 4.2. Let (I, J) be a point in ZgV . If (I, J) ∈ W1,λ,g,h then
λ /∈ IJ , λgh ∈ IJ , g ∈ I# and h ∈ J#.

Proof. Lemma 3.9 states that, if 〈I, J〉 ∼ 〈K,L〉 then IJ = KL. If
(I, J) ∈ W1,λ,g,h then there exists 〈K,L〉 equivalent to 〈I, J〉 such that
g ∈ K, λ /∈ L and λh ∈ L. Therefore λgh ∈ KL = IJ and λ /∈
KL = IJ . Lemma 3.9 states that, if 〈I, J〉 ∼ 〈K,L〉 then I# = K#

and J# = L#. If (I, J) ∈ W1,λ,g,h then there exists 〈K,L〉 equivalent
to 〈I, J〉 such that g ∈ K, λ /∈ L and λh ∈ L. Therefore g ∈ K# = I#

and h ∈ L# = J#. �

Theorem 4.3. Let λ ∈ V \{0} and g, h ∈ m. Let (I, J) be a point in
ZgV . The following are equivalent:

(i) (I, J) ∈ W1,λ,g,h

(ii) λgh ∈ IJ , g ∈ I#, h ∈ J# and (I, J) ∈ W1,λ,0,0.

Proof. (i)⇒ (ii)

Suppose (I, J) ∈ W1,λ,g,h. By lemma 4.2, λgh ∈ IJ , g ∈ I# and h ∈
J#. So it remains to show that (I, J) ∈ W1,λ,0,0. Since (I, J) ∈ W1,λ,g,h

there exists a pair 〈K,L〉 over V such that 〈I, J〉 ∼ 〈K,L〉 and λ /∈ L.
Hence (K,L) ∈ W1,λ,0,0. So (I, J) ∈ W1,λ,0,0.

(ii)⇒ (i)

Replace 〈I, J〉 by 〈K,L〉 such that λ /∈ L. We can do this since (I, J) ∈
W1,λ,0,0. By lemma 3.9, KL = IJ , I# = K# and J# = L#.

Case 1: λh ∈ L
If g ∈ K then we are done. So, suppose g /∈ K. First note that since

g ∈ K#, (K : g) ) K by 3.7(ii).
Suppose for a contradiction that (K : g) ⊆ (λhm : L). By (1),

page 4, (K : g)L ⊆ λhm. Since g /∈ K, we get that KL ⊆ λghm.
This implies that λgh /∈ KL and thus contradicts our assumptions. So
(K : g) ) (λhm : L).
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Now take x ∈ V such that x ∈ (K : g), x /∈ (λhm : L) and x /∈ K.
Then g ∈ (K : x) and xL ) λhm, so λh ∈ xL. Since λ /∈ L, λ /∈ Lx.
Therefore ((K : x), Lx) ∈ W1,λ,g,h and since x /∈ K, 〈(K : x), Lx〉 ∼
〈K,L〉.
Case 2: λh /∈ L
First note that since λ /∈ L and h ∈ L# = (L : λ)#,

(L : λ) ( ((L : λ) : h) = (L : λh).

Suppose for a contradiction that (gm : K) ⊇ (L : λh). Then by (1),
page 4, gm ⊇ K(L : λh). Since λh /∈ L, we get that λghm ⊇ KL,
which contradicts our assumption that λgh ∈ KL. Therefore

(L : λh) ) (gm : K).

Now take x ∈ V such that x ∈ (L : λh), x /∈ (L : λ) and x /∈ (gm : K).
Then x /∈ L, λ /∈ (L : x) and λh ∈ (L : x). Since x /∈ (gm : K),
xK ) gm. So g ∈ xK. Therefore (Kx, (L : x)) ∈ W1,λ,g,h and since
x /∈ L 〈K,L〉 ∼ 〈Kx, (L : x)〉. �

Corollary 4.4. Let λ ∈ V \{0} and g, h ∈ m. Let p C V be a prime
ideal and T C V be such that T# ⊆ p. Then (p, T ) ∈ W1,λ,g,h if and
only if λ /∈ T , λgh ∈ pT , g ∈ p and h ∈ T#.

Proof. Suppose (p, T ) ∈ W1,λ,g,h. By lemma 4.3, (p, T ) ∈ W1,λ,0,0,
λgh ∈ pT , g ∈ p and h ∈ T#. Since (p, T ) ∈ W1,λ,0,0, there exists a /∈ p
such that λ /∈ aT . However, since a /∈ p ⊇ T#, we have that T = aT .
So λ /∈ T .

Conversely, suppose λ /∈ T , λgh ∈ pT , g ∈ p and h ∈ T#. Since
λ /∈ T , (p, T ) ∈ W1,λ,0,0. So, by proposition 4.3, (p, T ) ∈ W1,λ,g,h. �

We will now investigate when a point (I, J) in ZgV is in a basic open set
W1,λ,0,0. In terms of modules, the condition (I, J) ∈ W1,λ,0,0 =Wλ,1,0,0

is equivalent to λ /∈ annVN〈I, J〉, since N〈I, J〉 ∈ Wλ,1,0,0 means
exactly that there exists an element in N〈I, J〉 not annihilated by λ.

Lemma 4.5. Let (I, J) be a point in ZgV such that I# 6= J#. Then
for all λ ∈ V \{0}, (I, J) ∈ W1,λ,0,0 if and only if λ /∈ IJ .

Proof. The forward implication is always true, see lemma 4.2.
Without loss of generality, we may assume I# ) J#. Since I# ) J#,

lemma 3.7(iii), there exists a /∈ I such that (I : a) ) J#. Therefore,
IJ = (I : a)Ja = Ja. So, 〈(I : a), Ja〉 ∼ 〈I, J〉 and λ /∈ Ja = IJ .
Therefore (I, J) ∈ W1,λ,0,0.

�
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Corollary 4.6. Let (I, J) be a point in ZgV such that I# 6= J#. If
I# ) J# then (I#, IJ) is topologically indistinguishable from (I, J) and
if J# ) I# then (IJ, J#) is topologically indistinguishable from (I, J).

Proof. We prove the first conjunct, the second follows analogously.
Suppose I# ) J#. Then, by lemma 3.7(v), (IJ)# = I# ∩ J# = J#.
Suppose k ∈ IJ . Take r ∈ (I)#\(IJ)#. Since r /∈ (IJ)#, we have that
k = µr for some µ ∈ IJ . Therefore k ∈ (IJ)I#. Thus IJ ⊆ (IJ)I#.
Therefore IJ = (IJ)I#. In view of lemma 4.5, (I#, IJ) is topologically
indistinguishable from (I, J). �

Lemma 4.7. Let (I, J) be a point in ZgV such that I# = J#. Then
for all λ ∈ V \{0}, λI# ) IJ implies (I, J) ∈ W1,λ,0,0.

Proof. We prove the contrapositive. Suppose that (I, J) /∈ W1,λ,0,0.
Then for all x /∈ I, λ ∈ Jx. Take a ∈ I#. There exists t /∈ I such
that at ∈ I. Since t /∈ I, λ ∈ tJ . Therefore aλ ∈ atJ ⊆ IJ . Therefore
λI# ⊆ IJ .

�

Definition 4.8. We say a point (I, J) in ZgV is normal if for all
λ /∈ IJ , (I, J) ∈ W1,λ,0,0. Otherwise we say (I, J) is abnormal.

In example 3.4, the points of form (ii) and (v) are abnormal, all other
points are normal. In example 3.5, the points of form (i) are abnormal,
all other points are normal.

In terms of modules, bearing in mind the comment after corollary
4.4, N〈I, J〉 is abnormal if and only if annVN〈I, J〉 ) IJ .

Note that by lemma 4.5, if (I, J) is abnormal then I# = J#. The
following lemma gives a necessary and sufficient condition for an ab-
normal point to be contained in a basic open set W1,λ,0,0.

Lemma 4.9. Let (I, J) be an abnormal point with I# = J# = p. Then
(I, J) ∈ W1,λ,g,h if and only if λp ) IJ , λgh ∈ IJ and g, h ∈ p.

Proof. Suppose (I, J) ∈ W1,λ,g,h. By proposition 4.3, (I, J) ∈ W1,λ,0,0,
λgh ∈ IJ and g, h ∈ p. There exists t /∈ I such that λ /∈ Jt because
(I, J) ∈ W1,λ,0,0. On the other hand, since (I, J) is abnormal, there
exists a ∈ V \{0} such that a /∈ IJ and (I, J) /∈ W1,a,0,0. Thus ap ⊇ IJ
and a ∈ Jt. Therefore

λp ⊇ Jt ) ap ⊇ IJ.

The reverse direction follows directly from lemma 4.7 and proposition
4.3. �
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Lemma 4.9 means that, up to topological indistinguishability, a point
(I, J) is completely determined by I#, J#, IJ and whether or not the
point is abnormal. We already know, lemma 4.5, that if I# 6= J# then
(I, J) is normal. Note that this means points of the form (I, 0) and
(0, I) are normal whenever I 6= 0. The equivalence class of the pair
(0, 0) only contains (0, 0). The point (0, 0) is in W1,λ,0,0 if and only if
λ 6= 0. Thus (0, 0) is a normal point. We now show that every abnormal
point (I, J) with I# = J# = p has IJ = ap for some a ∈ p\{0} and
conversely for each prime ideal p and each non-zero a ∈ p there is an
abnormal point (I, J) with I# = J# = p and IJ = ap.

Proposition 4.10. Let pC V be a prime ideal.

(i) If p2 = p and a ∈ p\{0} then the point (p, Ipa) is abnormal.
(ii) If p2 6= p and a ∈ V \{0} then the point (p, ap) is an abnormal.

(iii) For all non-zero a ∈ p there is a point (I, J) such that IJ = ap
and I# = J# = p.

(iv) Let (I, J) be an abnormal point with I# = J# = p. There exists
non-zero a ∈ p such that IJ = ap.

Proof. (i) For all b /∈ p, b · Ipa = Ipa since Ipa has attached prime p.
Therefore (p, Ipa) /∈ W1,a,0,0. As a /∈ Ipa · p = ap, (p, Ipa) is an abnormal
point.

(ii) For all b /∈ p, ap · b = ap since the attached prime of ap is p.
Take k ∈ p\p2. Then (p, ap) /∈ W1,ak,0,0 by corollary 4.4 but ak /∈ ap2.
So (p, ap) is abnormal.

(iii) Suppose p2 = p. Part (i) states that for all a ∈ p\{0}, (p, Ipa) is
abnormal and by lemma 3.11, p · Ipa = ap.

Suppose p2 6= p and a ∈ p\{0}. Take k ∈ p\p2. If a ∈ p2 then a = kµ
for some µ ∈ p. Part (ii) states that the point (p, µp) is abnormal and
µp2 = ap. If a ∈ p\p2 then ap = p2 and part (ii) states that (p, p) is
abnormal.

(iv) Suppose a /∈ IJ and (I, J) /∈ W1,a,0,0. Then ap ⊇ IJ and by
lemma 4.7, ap ⊆ IJ . �

In the above lemma we have exhibited all abnormal points up to
topological indistinguishability. When p2 6= p all abnormal points (I, J)
with I# = J# = p are of the form (p, ap) for some a ∈ V \{0}. However,
when p2 = p, there may be more abnormal points than those of the
form (p, Ipa) and (Ipa, p) where a ∈ p\{0}. For a prime ideal pC V , we
call an ideal ICV with I# = p a proper p-cut if it is not of the form ap
for any a ∈ V \{0} and not of the form Ipb for any b ∈ p\{0}. A point
(I, J) with I# = J# = p is an abnormal point if and only if I = Ipa
and J = bp for some a ∈ p\{0} and b ∈ V \{0}; I = ap and J = Ipb
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for some a ∈ V \{0} and b ∈ p\{0} or I and J are proper p-cuts with
IJ = ap for some a ∈ p\{0}.

5. The Ziegler spectrum of a valuation domain is sober

Recall that a closed subset C of a topological space is called irre-
ducible if whenever C is contained in the union of two closed sets A
and B then C is contained in A or in B. Equivalently, a closed subset
C is irreducible if and only if for all open sets U1,U2, if U1 ∩C 6= ∅ and
U2 ∩ C 6= ∅ then U1 ∩ U2 ∩ C 6= ∅.

By lemma 4.2, for all s, t ∈ m, we have that W1,ts,0,0 ∩W1,1,t,s = ∅.
Thus, for the Ziegler spectrum of a valuation domain we have the
following:

Lemma 5.1. Let s, t ∈ m and C be an irreducible closed subset of ZgV .
Either W1,ts,0,0 ∩ C = ∅ or W1,1,t,s ∩ C = ∅.

Definition 5.2. Let C be an irreducible closed subset of ZgV . We
define TC to be the set containing 0 and all non-zero λ ∈ V such that
W1,λ,0,0 ∩ C = ∅.

As noted above Lemma 4.5, we have that (I, J) ∈ W1,λ,0,0 if and only
if λ /∈ annRN〈I, J〉. Thus, for an irreducible closed set C, TC is the
intersection of the annihilators of the indecomposable pure-injective
modules contained in C.

Lemma 5.3. Let C be an irreducible closed set in ZgV . Then TC is an
ideal with the following properties: For all (I, J) ∈ C,

(i) TC(IJ)# ⊆ IJ ⊆ TC
(ii) I# ∩ J# = (IJ)# ⊆ T#

C

(iii) if (I, J) is normal then TC = IJ .

Proof. Since TC is the intersection of the annihilator ideals of the mod-
ules contained in C, TC is an ideal.

(i) Suppose that (I, J) ∈ C. Let λ ∈ IJ be non-zero and let i ∈ I
and j ∈ J be such that ij = λ. Then (I, J) ∈ W1,1,i,j. By
lemma 5.1 W1,λ,0,0 ∩ C = ∅. Therefore λ ∈ TC . So IJ ⊆ TC .
Suppose t ∈ TC . Then (I, J) /∈ W1,λ,0,0 sinceW1,t,0,0∩C = ∅. If
(I, J) is normal, this means t ∈ IJ . So t(IJ)# ⊆ IJ . If (I, J) is
abnormal, t(IJ)# ⊆ IJ by lemma 4.8 and that (IJ)# = I# =
J#.

(ii) From part (i), either TC(IJ)# ( TC or TC(IJ)# = IJ = TC .

Either case implies (IJ)# ⊆ T#
C .
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(iii) Suppose that (I, J) ∈ C is normal. Then (I, J) ∈ W1,λ,0,0 if and
only if λ /∈ IJ . So λ /∈ IJ implies λ /∈ TC . Therefore TC ⊆ IJ .
So, by (i), TC = IJ .

�

Corollary 5.4. Suppose that C is an irreducible closed subset of ZgV
containing at least one normal point. Then each abnormal point in C
is in the closure of every normal point in C.

Proof. Suppose that (K,L) ∈ C is normal and that (I, J) ∈ C is
abnormal with I# = J# = p. In order to show that (I, J) is in the
closure of (K,L), it is enough to show that, for all basic open sets
W1,λ,g,h, if (I, J) ∈ W1,λ,g,h then (K,L) ∈ W1,λ,g,h.

Suppose (I, J) ∈ W1,λ,g,h. Then (I, J) ∈ W1,λ,0,0, λgh ∈ IJ and
g, h ∈ p. By definition of TC , λ /∈ TC and by lemma 5.3 (i), λgh ∈ TC .
Since (K,L) is normal, by lemma 5.3(iii), KL = TC . So λ /∈ KL and
λgh ∈ KL.

Lemma 5.3(ii) states that p = I# ∩ J# ⊆ T#
C . So g, h ∈ p implies

g, h ∈ T#
C . Therefore g, h ∈ K# ∩ L# = (KL)# = T#

C . So g ∈ K# and
h ∈ L#.

Therefore λ /∈ KL, λgh ∈ KL, g ∈ K# and h ∈ L#. Since (K,L) is
normal, (K,L) ∈ W1,λ,g,h.

�

We are now left with two possible situations. An irreducible closed set
C either contains a normal point, in which case we must show that
C contains a normal point such that all other normal points in C are
in its closure, or, C only contains abnormal points. We will deal with
these two possibilities separately.

The following lemma gives restrictions on the image of an irreducible
closed set under the map

(I, J) 7→ (I#, J#)

in Spec∗V × Spec∗V .

Lemma 5.5. Let C be an irreducible closed subset of ZgV containing
at least one normal point. Then one of the following is true:

(1) For all normal points (I, J) ∈ C, either I# = T#
C and J# = T#

C ,
or (I, J) is topologically indistinguishable from (TC , p) for some

prime ideal p ) T#
C .

(2) For all normal points (I, J) ∈ C, either I# = T#
C and J# = T#

C ,
or (I, J) is topologically indistinguishable from (p, TC) for some

prime ideal p ) T#
C .
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Proof. Let C be an irreducible closed set containing at least one normal
point.

By lemma 5.3(iii), for all normal points (I, J) ∈ C, we have that

I# ∩ J# = T#
C since IJ = TC . Therefore, either I# = T#

C or J# =

T#
C . So, suppose for a contradiction that there exists (I, J) ∈ C and

(K,L) ∈ C such that I# ) T#
C and L# ) T#

C . Then I# ∩ L# ) T#
C .

Take t ∈ (I# ∩ L#)\T#
C and µ ∈ TC . Then µ = tr for some r ∈ T#

C .
Then (I, J) ∈ W1,1,t,r and (K,L) ∈ W1,1,r,t. Since C is irreducible,
C∩W1,1,t,r∩W1,1,r,t 6= ∅. Therefore, there exists (M,N) ∈ C such that

t ∈M# and t ∈ N#. So N# ∩M# ) T#
C . But this contradicts 5.3(ii).

By corollary 4.5, for all normal points (I, J) with I# ) J# (respec-
tively with J# ) I#) we have that (I, J) is topologically indistinguish-
able from (I#, IJ) (respectively (IJ, J#)). Thus we have proved the
lemma. �

Lemma 5.6. Let {pi | i ∈ I} be a set of prime ideals of V and let T
be an ideal of V with T# ( pi for all i ∈ I.

If C is a closed set in ZgV such that (T, pi) ∈ C for all i ∈ I then
(T,∪i∈Ipi) ∈ C.

If C is a closed set in ZgV such that (pi, T ) ∈ C for all i ∈ I then
(∪i∈Ipi, T ) ∈ C.

Proof. Suppose λ ∈ V \{0} and g, h ∈ m are such that (T,∪i∈Ipi) ∈
W1,λ,g,h. By lemma 4.5, (T,∪i∈Ipi) is a normal point and since ∪i∈Ipi )
T#, we have that T ∪i∈I pi = T . Thus λ /∈ T , λgh ∈ T , g ∈ T# and
h ∈ ∪i∈Ipi. Therefore h ∈ pi for some i ∈ I. Since pi ) T#, Tpi = T .
Therefore (T, pi) ∈ W1,λ,g,h.

The second statement follows symmetrically since (I, J) ∈ W1,λ,g,h if
and only if (J, I) ∈ W1,λ,h,g. �

When an irreducible closed set C contains a normal point (I, J) with
I# ( J#, the point (TC ,∪i∈Ipi) in the above lemma will be a generic
point of C and symmetrically, when C contains a normal point (I, J)
with I# ) J#, the point (∪i∈Ipi, TC) will be the generic point of C
(this will be fully justified in proposition 5.12). In the case that the
only normal points (I, J) contained in an irreducible closed set C are
such that I# = J#, lemma 5.8 will show that C only contains one
normal point up to topological indistinguishability; in view of lemma
5.4, this point will be generic in C.

Definition 5.7. Let p, qC V be prime ideals. Then

Xp,q = {(I, J) ∈ ZgV | I# = p and J# = q}.
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Lemma 5.8. Let pC V be a prime ideal. Suppose C is an irreducible
closed subset in ZgV . Then all normal points in Xp,p ∩ C are topologi-
cally indistinguishable.

Proof. Suppose (I, J) ∈ C ∩ Xp,p is a normal point in ZgV . For all
λ ∈ V \{0} and g, h ∈ m, (I, J) ∈ W1,λ,g,h if and only if λ /∈ IJ = TC ,
λgh ∈ IJ = TC and g, h ∈ I# = J# = p. Thus, whether (I, J) ∈
W1,λ,g,h is dependent only on TC and p. Therefore, all normal points
in C ∩Xp,p are topologically indistinguishable. �

Proposition 5.9. Let C be an irreducible closed subset containing at
least one normal point. Then C has a generic point.

Proof. First suppose that for all normal points (I, J) ∈ C, I# = J#.
Then, by lemma 5.8, C contains only one normal point up to topological
indistinguishability. Thus, by lemma 5.4, this point is generic.

Now suppose that C contains a normal point (I, J) such that J# )
I#. By lemma 5.5, all normal (K,L) ∈ C either have T#

C = K# = L#

or are topologically indistinguishable from a point of the form (TC , p)
for some prime ideal pC V . Let I index the prime ideals pi such that
(T, pi) ∈ C with pi ) T#. By lemma 5.6, (TC ,∪i∈Ipi) ∈ C. So it
remains to show that (TC ,∪i∈Ipi) is a generic point of C. This follows
for abnormal points by lemma 5.4. Suppose (I, J) ∈ C is a normal

point. Then IJ = TC and I# = T#
C and J# ⊆ ∪i∈Ipi. So, if (I, J) ∈

W1,λ,g,h then λ /∈ TC , λgh /∈ TC , g ∈ T#
C and h ∈ J# ⊆ ∪i∈Ipi. Thus

(TC ,∪i∈Ipi) ∈ W1,λ,g,h. Therefore (I, J) is in the closure of (TC ,∪i∈Ipi).
When C contains a normal point (I, J) such that I# ) J#, the

generic point of C is (∪i∈Ipi, TC) where the prime ideals pi are exactly
those prime ideals such that (pi, TC) ∈ C. This follows symmetrically
to the argument above. �

It remains to consider irreducible closed sets of ZgV containing only
abnormal points.

Lemma 5.10. Let C be an irreducible closed subset of ZgV containing
only abnormal points. For each prime ideal pCV , all points in C∩Xp,p

are topologically indistinguishable from each other.

Proof. Suppose p C V is a prime ideal such that C ∩ Xp,p 6= ∅. Let
(I, J), (K,L) ∈ C ∩ Xp,p. We will show that IJ = KL and thus, by
lemma 4.9, (I, J) and (K,L) are topologically indistinguishable.

Seeking a contradiction, suppose that IJ ( KL. Since (I, J) and
(K,L) are abnormal, there exists a, b ∈ p such that ap = IJ ( KL =
bp.

We consider the cases p2 = p and p 6= p2 separately.
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If p2 = p then there exists c, γ1, γ2 ∈ p such that ap ( cp ( bp and
γ1γ2 = c. By lemma 4.9, (I, J) ∈ W1,c,0,0 and (K,L) ∈ W1,1,γ1,γ2 . But
W1,c,0,0 ∩W1,1,γ1,γ2 = ∅. This contradicts the irreducibility of C. Thus
IJ = KL.

Now suppose p2 6= p. Take k ∈ p\p2. By lemma 4.9, (I, J) ∈ W1,b,0,0

and (K,L) ∈ W1,1,b,k. Therefore, since C is irreducible, there exists
(T, S) ∈ C ∩W1,b,0,0 ∩W1,1,b,k. Since C contains only abnormal points,
TS = γq for some prime ideal q and some γ ∈ q. Moreover,

bq ) γq ⊇ bkV.

Hence q ) p.
Claim: Either γq ) bp or there exists µ ∈ V such that µq ) γq and

µ ∈ bp.
Suppose γq ⊆ bp. Then γq ( bp as p 6= q. Take s ∈ bp\γq and

t ∈ q\p. Since s ∈ p and t /∈ p, there exists µ ∈ p such that s = tµ.
Now µ ∈ bp since s ∈ bp and t /∈ p and µq ) sq ⊇ γq.

Having proved the claim, we can now consider the two possible cases
in turn and show that either case contradicts the irreducibility of C.

Case 1: γq ) bp
Take q ∈ q such that γq /∈ bp. So we have that

γqp ⊇ bp ) ap.

Thus (I, J) ∈ W1,γq,0,0 and (T, S) ∈ W1,1,γ,q. ButW1,γq,0,0∩W1,1,γ,q = ∅.
This contradicts the irreducibility of C.

Case 2: There exists µ ∈ V such that µq ) γq and µ ∈ bp.
Take p ∈ p such that µ = bp. We have that (T, S) ∈ W1,µ,0,0 and

(K,L) ∈ W1,1,b,p. But W1,µ,0,0 ∩ W1,1,b,p = ∅. This contradicts the
irreducibility of C. �

It is worth noting that without the assumption that C only contains
abnormal points the above lemma is not true i.e. the specialisation
order is not a root system.

Lemma 5.11. Let p, q C V be prime ideals such that p ) q. Suppose
(I, J) ∈ Xp,p is abnormal and IJ ⊆ q. Then there exists an abnormal
point (K,L) ∈ Xq,q such that (K,L) is in the closure of (I, J).

Proof. Since (I, J) is abnormal, there exists a ∈ p such that ap = IJ .
Since ap ⊆ q, a ∈ q. By lemma 4.10(iii), there exists an abnormal
point (K,L) ∈ Xq,q with KL = aq.

We will now show that (K,L) is in the closure of (I, J). Suppose
(K,L) ∈ W1,λ,g,h. Then λq ) KL = aq, λgh ∈ aq and g, h ∈ q. Since
p ⊇ q, g, h ∈ p. Since aq ⊆ ap, λgh ∈ ap.
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It remains to show that λp ) ap. By lemma 3.8, λq ) aq implies
a ∈ λq. Therefore a ∈ λp. So, again by lemma 3.8, λp ) ap.

Putting all this together, we get that (I, J) ∈ W1,λ,g,h. Therefore
(K,L) is in the closure of (I, J). �

Proposition 5.12. Let C be an irreducible closed subset of ZgV con-
taining only abnormal points and let I index the prime ideals pi such
that Xpi,pi ∩ C 6= ∅. Then:

(i) T#
C = ∪pi

(ii) (TC ,∪pi) ∈ C
(iii) Every point in C is in the closure of (TC ,∪pi), that is (TC ,∪pi)

is a generic point for C.

Proof. First order I by i ≥ j if and only if pi ⊇ pj. By lemma 5.10,
Xpi,pi ∩C contains one point up to topological indistinguishability. For
each i ∈ I, let (Ii, Ji) be such a point and let ai ∈ pi be such that
aipi = IiJi. To make reading easier, let P := ∪i∈Ipi.

(i) By lemma 5.3 (ii), pi ⊆ T#
C for all i ∈ I. Suppose t ∈ T#

C . There
exists s /∈ TC such that ts ∈ TC . Thus W1,ts,0,0 ∩ C = ∅ and W1,s,0,0 ∩
C 6= ∅. Therefore, there exists i ∈ I such that (Ii, Ji) ∈ W1,s,0,0 and
(Ii, Ji) /∈ W1,ts,0,0. Thus spi ) IiJi = aipi and IiJi = aipi ⊇ stpi.

Hence t ∈ pi. Therefore T#
C = P.

(ii) First we show that for i ≥ j, aipi ⊇ ajpj. In order to do this we
first show that ai ∈ pj. Suppose to the contrary that ai /∈ pj. Take t ∈
pi\pj. Since ait /∈ pj, aitpj = pj ) ajpj. Therefore (Ii, Ji) ∈ W1,1,ai,t

and (Ij, Jj) ∈ W1,ait,0,0. But this contradicts the irreducibility of C.
Thus ai ∈ pj.

Let (K,L) be an abnormal point in Xpj ,pj such that KL = aipj.
Lemma 5.11 tells us that (K,L) is in the closure of (Ii, Ji) and by lemma
5.10 (K,L) and (Ij, Jj) are topologically indistinguishable. Thus aipi ⊇
aipj = KL = IjJj = ajpj.

We now show that if λ ∈ V \{0} and i, j ∈ I with i ≥ j, then

λpj ) ajpj implies λpi ) aipi.

Suppose that λpj ) ajpj and λpi ⊆ aipi. Take t ∈ pi\pj. So t2 ∈ pi\pj.
Since t2 /∈ pj, λt

2pj = λpj ) ajpj. Therefore (Ij, Jj) ∈ W1,λt2,0,0. Since
λt ∈ pi, t ∈ pi and λt2 ∈ aipi, (Ii, Ji) ∈ W1,1,λt,t. But W1,λt2,0,0 ∩
W1,1,λt,t = ∅. This contradicts the irreducibility of C. Therefore λpi )
aipi.

Putting this all together, we show that (TC ,P) ∈ C. Suppose
(TC ,P) ∈ W1,λ,g,h. As stated in lemma 4.4, λ /∈ TC , λgh ∈ TCP

and g, h ∈ P = T#
C . So, since λ /∈ TC , there exists i ∈ I such that
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(Ii, Ji) ∈ W1,λ,0,0. So λpi ) aipi. So for all l ≥ i, (Il, Jl) ∈ W1,λ,0,0.
Since λgh ∈ TCP, there exists some j ∈ I, p ∈ pj and t ∈ TC such that
λgh = tp. Since t ∈ TC , tpj ⊆ ajpj. Therefore λgh = tp ∈ ajpj. So,
for all l ≥ j, λgh ∈ alpl. Since g, h ∈ P, there exists k ∈ I such that
g, h ∈ pk and thus for all l ≥ k, g, h ∈ pl. Now let m be greater than
or equal to i, j and k. Then λpm ) ampm, λgh ∈ ampm and g, h ∈ pm.
So (Im, Jm) ∈ W1,λ,g,h. Thus (TC ,P) ∈ C.

(iii) By lemmas 5.11 and 5.10, it is enough to show that TCP ⊆ pi
for all i ∈ I. Suppose x ∈ TC . Then W1,x,0,0 ∩ C = ∅. Therefore
xpi ⊆ aipi ( pi. Thus x ∈ pi. Therefore TC ⊆ pi. So TCP ⊆ pi. �

Proposition 5.9 and proposition 5.12 prove our theorem.

Theorem 5.13. Every irreducible closed subset of ZgV has a generic
point.

6. Localisation and generalising to Prüfer domains

In this section we will show that the Ziegler spectrum of a Prüfer
domain is sober.

An integral domain R is called a Prüfer domain if for all pCR prime,
Rp is a valuation domain.

Definition 6.1. Let R be a commutative ring and N an indecomposable
pure-injective module. The set of r ∈ R whose action on N by multi-
plication is not bijective, denoted AttN , is called the attached prime of
N .

Recall that, for a commutative ring R, Spec∗R is the Hochster dual of
the prime ideal spectrum, SpecR, of R, that is, it is the space we get by
declaring the complements of compact open sets in SpecR to be open.

Proposition 6.2. Let R be a commutative domain. The map taking
an indecomposable pure-injective to its attached prime induces a con-
tinuous map from ZgR to Spec∗R.

Proof. In order to check that

f : ZgR → Spec∗R, f : N → AttN

is continuous, it is enough to check the preimage of subbasic open
sets are open. First note that the collection of open sets V (aR) =
{p ∈ Spec∗ | a ∈ p} with a ∈ R are a sub-basis for Spec∗R, so it is
enough to check that the pre-image under f of each V (aR) is open.
Suppose N is an indecomposable pure-injective module and a ∈ R.
Observe that the following 3 statements are equivalent:

(i) f(N) ∈ V (aR).
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(ii) Either there exists n ∈ N\{0} such that na = 0 or there exists
n ∈ N such that a does not divide n.

(iii) N ∈
(
xa=0
x=0

)
∪
(
x=x
a|x

)
.

Hence for any a ∈ R the pre-image of V (aR) under f is
(
xa=0
x=0

)
∪
(
x=x
a|x

)
.

Thus f is continuous. �

Theorem 6.3. [Pre09, pg67] Suppose that f : R → S is an epimor-
phism of rings. If N is an indecomposable pure injective S-module then
as an R-module, N is indecomposable pure-injective. The induced map
from ZgS to ZgR continuously embeds ZgS into ZgR as closed set.

Lemma 6.4. Let R be a commutative ring, pCR be a prime ideal and
τ : R → Rp be the localisation map. The image of the map induced by
τ from ZgRp

to ZgR is the set of indecomposable pure-injectives with
attached prime contained in p.

Proof. Suppose N has attached prime q ⊆ p. Then for all r /∈ p, multi-
plication by r is a bijective map. Hence we may define multiplication by
1/r to be the inverse of this map. So N can be endowed with the struc-
ture of an Rp-module. It is clear that N remains indecomposable as an
Rp-module. In order to see that N remains pure-injective, note that a
pure-embedding between Rp-modules remains a pure-embedding when
viewed as a map between R-modules and that if A,B are Rp-modules
and a map A → B is an R-module map then it is also an Rp-module
map.

Suppose N is an Rp-module. Then N may be viewed via τ as an
R module. For any t /∈ p, since N is an Rp-module, the action of t is
invertible. Hence t /∈ AttNR. Therefore p ⊇ AttNR. �

Proposition 6.5. Let R be a commutative ring. The following are
equivalent:

(i) ZgR is sober.
(ii) For all pCR prime, ZgRp

is sober.
(iii) For all mCR maximal, ZgRm

is sober.

Proof. (i)⇒ (ii) Suppose ZgR is sober. For any prime ideal pCR, ZgRp

is homeomorphic to a closed subset of ZgR and hence is sober.
(ii) ⇒ (iii) is obvious.
(iii) ⇒ (i) Suppose C ⊆ ZgR is an irreducible closed set. Its image

f(C) in Spec∗R is irreducible. So, the closure of f(C) has a generic
point p in Spec∗R. Hence, N ∈ C implies f(N) ⊆ p. Let m be a
maximal ideal containing p. Then, N ∈ f(C) implies f(N) ⊆ m.
Therefore, by lemma 6.4, C is contained in a closed set homeomorphic
to ZgRm

. Hence, if ZgRm
is sober then C has a generic point. �
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Corollary 6.6. Let R be a Prüfer domain. The Ziegler spectrum of R
is sober.
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